ECS Fall 2013 Abstract

Title: Tandem Junction Si Microwire Based Devices for Water Splitting

Authors: Matthew R. Shaner, Kate Fountaine, Shane Ardo, Robert Coridan, Yiseul Park, Kyoung-Shin Choi, Harry A. Atwater, Nathan S. Lewis

Abstract:

We have developed a microwire based Si/WO $_3$ tandem junction device for photo-assisted hydrogen production via water splitting. The device consists of an n-type Si microwire array with a heavily doped, radial p+-Si emitter, forming a buried Si n/p+ junction. Coating each Si microwire are two conformal layers consisting of a sputtered ITO contact layer below an electrodeposited WO $_3$ photoanode layer. Upon immersion in solution the WO $_3$ forms a semiconductor/liquid junction with solution, completing the tandem junction device.

Non-aqueous photoelectrochemical characterization of the buried Si n/p⁺ junction showed V_{0C} =500mV and J_{SC} =10 mA-cm⁻² with respect to both ferrocene and coblatocene redox couples. Aqueous photoelectrochemical characterization (1M H_2SO_4) of the WO₃/liquid junction showed V_{0C} =700mV and J_{SC} =0.8mA-cm⁻² with respect to the oxygen evolution reaction (0ER). Complete device characterization in 1M H_2SO_4 showed a V_{0C} =1.2V and a J_{SC} =0.5mA cm⁻² with respect to the 0ER at 1 Sun illumination. Light concentration (12 Suns) yielded a V_{0C} greater than the water splitting potential enabling successful unassisted H_2 (g) generation.

Recent work has focused on integration of Mo doped BiVO₄ (Mo:BiVO₄) in place of WO₃ to increase performance. Results on planar Si n/p⁺ junctions demonstrate $V_{0C} = 1.5V$ vs OER with current densities >0.6 mA-cm⁻² at the hydrogen evolution potential. Current work is focused on microwire Si/Mo:BiVO₄ devices for unassisted water splitting.