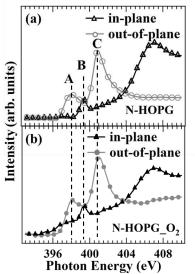
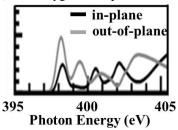
## Oxygen adsorption characteristics of nitrogen-doped graphite revealed by N 1s X-ray absorption spectroscopy

<u>Hisao Kiuchi<sup>1</sup></u>, Takahiro Kondo<sup>2</sup>, Masataka Sakurai<sup>2</sup>, Hideharu Niwa<sup>1<u>†</u></sup>, Jun Miyawaki<sup>3,4</sup>, Yoshihisa Harada<sup>3,4</sup>, Takashi Ikeda<sup>5</sup>, Zhufeng Hou<sup>6</sup>, Kiyoyuki Terakura<sup>6</sup>, Junji Nakamura<sup>2</sup>, and Masaharu Oshima<sup>1,3</sup>

 <sup>1</sup>Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
<sup>2</sup>Institute of material science, University of Tsukuba, Japan
<sup>3</sup> Synchrotron Radiation Research Organization, The University of Tokyo, Japan
<sup>4</sup> The Institute for Solid State Physics, The University of Tokyo, Japan
<sup>5</sup> Japan Atomic Energy Agency, Japan
<sup>6</sup> Tokyo Institute of Technology, Japan
<sup>†</sup> Present affiliation: ISSP, the University of Tokyo.


Recently carbon-based oxygen reduction catalysts have attracted much attention as cathode catalysts alternative to Pt for polymer electrolyte fuel cell [1-2]. These catalysts are modified by doping of light elements (such as nitrogen) and/or transition metals to accelerate oxygen reduction reaction (ORR). The role of the doped light elements and/or the transition metals on the ORR activity has been under debate [1-3]. In this study, we have investigated the role of nitrogen species on the first step of ORR, i.e. oxygen adsorption. We have synthesized a nitrogen doped graphite which models specific nitrogen species in carbon-based catalysts and observed changes in the electronic structure of nitrogen adsorption by X-ray upon oxygen absorption spectroscopy (XAS).

In order to synthesize the model catalyst, highly oriented pyrolytic graphite (HOPG, ZYA-grade, Panasonic Inc.) was first annealed at 1000 K for 30 minutes. Second, HOPG was irradiated by nitrogen ions using an ion gun (OMI-0730, Omegatron Inc.). Acceleration voltage and the amount of dosed nitrogen ions were 200 V and  $4x10^{14}$  ions cm<sup>-2</sup>, respectively. Finally, the nitrogen doped HOPG was annealed at 1000 K for 1 hour (N-HOPG). N 1s XAS of N-HOPG shows a graphite-like N rich surface with a small contribution of pyridinic N (Fig. 1(a)). Oxygen adsorption to N-HOPG was performed under 1 atm for 1 hour at R.T. (N-HOPG\_O<sub>2</sub>). N 1s XAS measurements of N-HOPG before and after oxygen adsorption were performed at BL07LSU in SPring-8. X-ray incident angle to the sample surface was changed to  $0^{\circ}$ ,  $45^{\circ}$  and  $80^{\circ}$  to extract information about in-plane and out-of-plane orbital in the unoccupied states. All experiments and the sample preparation were performed under  $2x10^{-6}$  Pa.


Figure 1 shows in-plane and out-of-plane components in the  $\pi^*$  region (a) before and (b) after oxygen adsorption, extracted from the N 1s XAS spectra of N-HOPG for the three incident angles. The intensity of each spectrum was normalized by the intensity well above the absorption structures. Three sharp peaks in the  $\pi^*$  region are assigned to **A**: pyridinic N, **B**: cyano N and **C**: graphite-like N [3]. Upon oxygen adsorption following changes are observed in the XAS spectra; (1) appearance of pyridinic N  $\pi^*$  state in the in-plane component, (2) increase and decrease of graphite-like N and pyridinic N, respectively. The presence of the in-plane pyridinic N  $\pi^*$ 

component after oxygen adsorption indicates the appearance of pyridinic N where the C-N bond is tilted from the basal plane. The result (2) has also been observed in carbon-based catalysts synthesized from polyamide [4]. Since the graphite-like N has three C-N bonds while pyridinic-N has only two, the result suggests that C-N bond breaking of graphite-like N occurs and pyridinic N is produced after oxygen adsorption. After the bond breaking, the remaining C-N bond is tilted from the surface. Combined with a density functional theory (DFT) calculation, we found one of possible models that accounts for the C-N bond breaking and increase of pyridinic N  $\pi^*$  state in the in-plane component, i.e. nitrogen doped inverse-Stone-Wales (ISW) defect formed from a pair of joined pentagonal carbon rings placed between a pair of heptagonal rings. Figure 2 shows calculated N 1s XAS spectra of the ISW defect after oxygen adsorption, which well explains the appearance of pyridinic-N in the in-plane component at 398 eV.

In summary, we have performed polarization dependent XAS of nitrogen doped graphite before and after oxygen adsorption for three X-ray incident angles and extracted in-plane and out-of-plane components. Comparing the experimental results with the DFT calculation, we have taken a carbon close to the graphitelike N in ISW defects as a possible model for the oxygen adsorption site.



**Figure 1.** Experimental N 1s XAS spectra of N-HOPG (a) before and (b) after oxygen adsorption.



**Figure 2.** Calculated N 1s XAS spectra of the ISW defect after oxygen adsorption.

## References

- [1] E. Proietti et al., Nat. Commun. 2 (2011) 416.
- [2] K.P. Gong et al., Science **323** (2009) 760.
- [3] H. Niwa et al., J. Power Sources **187** (2009) 93.
- [4] H. Kiuchi et al., Electrochim. Acta 82 (2012) 291.

## Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO).