SnSb anode in a SnSb/NaNi\textsubscript{0.1}Mn\textsubscript{1/3}Fe\textsubscript{1/3}O\textsubscript{2} Na-ion battery

Dehua Zhou1,2, Michael Slater1, Donghan Kim1, Eungjie Lee1, Jacob Jorne1, and Christopher Johnson1*

1Chemical Sciences and Engineering Division
Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL,60439
2Chemical Engineering Department, University of Rochester, NY, 14627

Introduction

The practical application of sodium-ion batteries requires electrode material that will provide high-voltage and high-capacity leading to cells with high-energy density. In fact our energy density calculations have shown that Na-ion batteries can potentially reach a high density. In fact our energy density calculations have shown that Na-ion batteries can potentially reach a high density as 220 Wh/kg.1 However, even to reach the 220 Wh/kg threshold would require a cathode and anode that possess high-capacity of 180 and 500 mAh/g (with first cycle low irreversibility), respectively, with 3 V cell operation.

Sodium electrochemically reacts at low voltage with SnSb alloy anode and it has shown good high-capacity and cycling properties. This work examines both the SnSb anode and its use in a Na-ion battery.

Experimental

SnSb/C nanocomposites were prepared by high energy ball milling under an argon atmosphere. The SEM images showed the primary particle size was about 10-20 micrometers. Layered NaNi\textsubscript{0.1}Mn\textsubscript{1/3}Fe\textsubscript{1/3}O\textsubscript{2} was synthesized and used as the cathode. Coin cells (2032) were cycled in 1M NaPF\textsubscript{6} solution in EC:EMC (3:7) with 5% FEC SEI additive was used as electrolyte. The current density was 10 mA/g based on the active cathode material. The relative anode:cathode ratio was 5% FEC SEI additive was used as electrolyte. The coulombic efficiency is very close to 100% after the first cycle.

Results and Discussion

Apart from the first formation cycle, the SnSb/NaNi\textsubscript{0.1}Mn\textsubscript{1/3}Fe\textsubscript{1/3}O\textsubscript{2} cell exhibits smooth monotonic voltage profiles that are shown in Fig. 1(a). The first cycle irreversible capacity loss is attributed to SEI formation and Na trapping in the carbon portion of the nanocomposite. The reversible cell capacity observed is 75mAh/g (cathode basis) at C/10 after 50 cycles with an average voltage of 3 V. This amounts to about 35% of the total Na cycled into and out of the layered cathode.

The discharge capacity retention after 50 cycles is 92.5% and the coulombic efficiency is very close to 100% after the first cycle. The SnSb/NaNi\textsubscript{0.1}Mn\textsubscript{1/3}Fe\textsubscript{1/3}O\textsubscript{2} cell voltage profiles are indicative of two single phase intercalation reactions in both the anode and cathode. Fig. 2 is the in situ XRD patterns (synchrotron –X-rays) of Na/SnSb cell during the first cycle. As it is apparent, the SnSb which starts out crystalline immediately turns amorphous upon Na insertion; the material also fails to revert to its original SnSb alloy phase upon Na removal. Since the Na phases of SnSb formed are amorphous, they would likely buffer the volume change upon sodiation better than that of pure sodium alloy phases of Sn and Sb which would lead to improved cycleability. We will discuss the battery chemistry and the mechanism of sodium insertion into SnSb alloy in this presentation.

References

Acknowledgments

Funding from the Department of Energy under Contract DE-AC02-06CH11357 is gratefully acknowledged.

The submitted document has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

![Graph](image-url)

Figure 1: (a) Voltage profiles of SnSb/NaNi\textsubscript{0.1}Mn\textsubscript{1/3}Fe\textsubscript{1/3}O\textsubscript{2} between 2-3.9V, from right to left: 1st cycle, 5th cycle, 10th cycle, 20th and 50th cycle. (b) Cycling performance of SnSb/NaNi\textsubscript{0.1}Mn\textsubscript{1/3}Fe\textsubscript{1/3}O\textsubscript{2} at a current rate 10mA/g based on the active cathode material

![Graph](image-url)

Figure 2. XRD patterns and corresponding voltage profile of the in situ Na/SnSb alloy anode cell.