Electrochemical Characteristics of Carbon-Coated Li₄Ti₅O₁₂ by carbon source and structure for Hybrid Capacitor

Sujin Yun¹, Hanjoo Kim², Hongil Kim², Soogil Park¹, Kyuwon Jeong^{*1}

 ¹ Chungbuk National University
¹ Naesudong-ro, Heungdeok-gu, 361-763, Cheongju, Chungbuk, Korea

².Pureechem

² Haed office Factory block 2 floor, Jikji-daero 474 beongil60, Heungdeok-gu, Cheongju-si Chungbuk, Korea

*E-mail: jeong@cbnu.ac.kr

The Electrochemical hybrid capacitors can perform that need to high power operations and long cycle life. Beside with a high power capability and relatively large energy density compared to conventional capacitors. The hybrid capacitor utilizes the chargetransfer pseudocapacitance arising from reversible Faradic reactions. [1]

 $Li_4Ti_5O_{12}$ has many advantages such as good reversibility of Li-ion insertion / extraction and near-zero structural change during charging and discharging. Despite many advantages associated with $Li_4Ti_5O_{12}$, its low electronic conductivity at room temperature (<10⁻¹³ S cm⁻¹) results in initial capacity loss and poor rate capability. Several methods have been utilized to improve the electronic conductivity of $Li_4Ti_5O_{12}$ and positive results have been reported. [2]

Our strategy is synthesizing $Li_4Ti_5O_{12}$ coating with conductive carbon. Especially, it was expected to lead to adequate improvement of the electrical conductivity of $Li_4Ti_5O_{12}$. This aspect is attracted to use a carbon-coated $Li_4Ti_5O_{12}$ as negative electrode in nonaqueous hybrid supercapacitor. [3]

First, various carbon materials were used as coating sources for the carbon coating on the surface of $Li_4Ti_5O_{12}$, In addition, the high rate charge-discharge characteristics and cycle ability were conformed to apply that to hybrid capacitor by electrochemical analyzing carbon sources

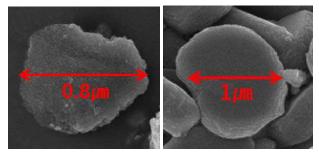


Fig 1 Scanning electron microscope images of $Li_4Ti_5O_{12}$ and carbon coated $Li_4Ti_5O_{12}$ from styrene.

In this study, Carbon-coated $Li_4Ti_5O_{12}$ was synthesized by sol-gel method using lithium hydroxide (LiOH) and tetratitanium iso-propoxide(TTIP), and various organic composite. We have researched the developed electrochemical characteristics of carboncoated $Li_4Ti_5O_{12}$ spherical particles. Carbon-coated $Li_4Ti_5O_{12}$ was analyzed by scanning electron microscopy and X-ray diffraction. The carbon content was measured by elemental analysis and thermogravimetric analysis. The direct current electrical conductivity was measured using a direct voltametry method. The electrochemical analyses were accomplished to asymmetric hybrid capacitor.

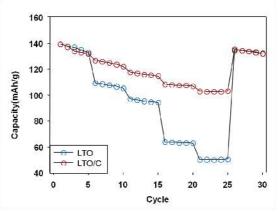


Fig 2 Discharge capacity by current density of LTO and LTO-C composite from styrene in LiBF4/PC

Reference

[1] H-G Jung, N Venugopal, B Scrosati, Y-K Sun, Journal of Power Sourses 221 (2013) 266-271..

[2] K. Kanamura, T. Chiba, K. Dokko, Journal of the European Ceramic Society 26 (2006) 577-581.

[3] W. Fang, X. Cheng, P. Zuo, Y. Ma, G. Yin, Electrochimica Acta 93 (2013) 173-178