Electrochemical properties of tin oxide anodes for sodium-ion batteries

Ying-Ching Lu^a, Nikolay Dimov^b, Shigeto Okada^b ^aInterdisciplinary Graduate School of Engineering Science, Kyushu University, ^bInstitute of Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga, 816-8580, Japan

Introduction

Recently, sodium-ion batteries have attracted great deal of attention as next generation low-cost and low environmental impact rechargeable power sources. Especially for large-scale battery, these batteries are considered as alternative to their lithium-ion counterparts. However, many of the anodes used in lithium-ion batteries such as graphite or silicon are electrochemically inactive towards sodium. Although Sn and the oxides are a few exceptions which are active towards both Li^+ and Na^+ , there are few reports about the electrochemical performance of Sn-based anodes for sodium-ion batteries so far [1-3]. Here, we investigated the anode performances of tin oxides for sodium-ion batteries through the comparison of the electrochemical properties of SnO and SnO₂.

Experimental

SnO and SnO₂/C anode materials were prepared by hydrothermal method. SnCl₂·2H₂O or SnCl₄·5H₂O were dissolved in 0.25M citric acid and 0.1M sucrose solution. Aqueous ammonia was used to adjust pH and obtain SnO_x precursor solutions. Afterwards these tin precursor solutions were transferred to Teflon flasks and treated at 150°C for 1h by microwave-assisted heating. Thermal treatment yielded SnO and SnO₂/C powders which were washed with distilled water and ethanol several times and dried at 80°C overnight. Finally, SnO₂/C materials were carbonized at 500°C for 1h in Ar, and SnO₂ which without carbon were synthetized in the same procedure without sucrose.

Electrochemical measurements were carried out in two electrode coin cells. Working electrodes consisted of 70 wt% active material, 20 wt% acetylene black (AB) and 10 wt% poly acrylic acid (PAA). Sodium metal foils were used as counter electrodes and the electrolyte was 1M NaClO₄ dissolved in propylene carbonate (PC). Chargedischarge measurements were performed under constant current density 50 mA/g in the voltage range 5 mV-2.0 V.

Results and discussion

Figure 1 shows XRD patterns of SnO and SnO₂/C powders. It is clearly seen that our experimental procedure yielded pure SnO and SnO₂ phases shown in Fig.1. Voltage profiles and cycle performance of SnO, SnO₂/C electrodes are shown in Fig.2 and Fig.3. In Fig.3 both SnO and SnO₂/C shows higher capacity than SnO₂. The Reversible capacity of our SnO and SnO₂/C electrodes in the first cycle are 408, 294 mAh/g, respectively. The irreversible capacity in the first cycle of SnO and SnO₂/C are 31% and 55%. First cycle irreversible capacity is attributed to the formation of Na₂O matrix, which is similar to the formation of Li₂O when SnO_x is cycled vs. Li. These data show that tin oxides, especially SnO, can provide viable anodes with large capacity for sodium-ion batteries.

Acknowledgements

This work was financially supported by the Elements Science & Technology Projects of MEXT.

References

[1] S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, Electrochem. Commun., **21**, 65 (2012).

[2] L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Niea, J. Liu, Chem. Commun., 48, 3321–3323(2012).
[3] D. Su, H. J. Ahn, G. Wang, Chem. Commun., 49, 3131(2013).

Na/Na⁺.