Biomimetic Si nanotips and their hetero-junctions: from moth-eye to LEDs and supercapacitors

Li-Chyong Chen\textsuperscript{a*} and Kuei-Hsien Chen\textsuperscript{b}

\textsuperscript{a}Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
\textsuperscript{b}Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan

The periodic sub-wavelength structures as antireflection (AR) surfaces were first discovered in nature while inspecting the eyes of night-flying moths by Bernhard in 1967. Several other interesting biological species with similar micro-features have also been known that manipulates light [\textit{Mater. Sci. Eng. Rev.}, \textbf{2010}, 69, 1-35]. We have shown that, by using the self-masked dry etching technique, arrayed silicon nanotips (SiNTs) with high aspect ratios can be fabricated, on planar Si wafers monolithically, which can render the wafer to be black and shine-less. Remarkably, such a man-made moth eye suppresses reflection of light from ultraviolet to the terahertz frequency region, a world-record broad band coverage, and its AR property also holds good for a wide angle of incidence and both \textit{s} and \textit{p} forms of polarizations of light [\textit{Nature Nanotechnology}, \textbf{2007}, 2, 770-774].

In this talk, several examples of nano-scale hetero-junctions based on SiNTs array will be presented. Owing to the localized field effect at the nanoscale-sharp apex of the tip under applied bias, enhancement in electrically driven device performance and novel field-induced properties are anticipated. An ultralow turn-on field and a higher attainable emission current density have been demonstrated for the SiNTs. The electroluminescence properties of the light emitting diode (LED) consisted of ZnO/SiNTs hetero-junctions are found to be enhanced by the tip structure. These tip-structured LEDs are energy-efficient, namely, they offer more light emission at a much lower turn-on voltage than their thin-film counterparts [\textit{Nano Lett.}, \textbf{2009}, 9, 1839-1843]. Meanwhile, when ZnO and aluminum oxide (Al\textsubscript{2}O\textsubscript{3}) bi-layer dielectric is deposited on the SiNTs using atomic layer deposition to form a 3D trench-structured metal-insulator-metal nano-capacitor array, ultra-high value of equivalent planar capacitance (~300 \textmu F cm\textsuperscript{-2}) is achieved, which is about 30 times higher than those previously reported [\textit{Nano Lett.}, \textbf{2013}, 13, 1422-1428]. More examples for highly functioning devices using SiNTs-based hetero-junctions will also be illustrated. Our approach opens up new possibilities to Si-based nano-structured sensors, optoelectronic, supercapacitor, spintronic and photovoltaic devices with standard ultra-large-scale integrated technology.

\textbf{Keywords:}
Si, nanotips, hetero-junctions, antireflection, light emitting diode, supercapacitor