"SYNTHESIS OF FLUORESCENT NANOCOMPOSITES CONSTITUTED OF GdPO;Ei ¹² AND Tb ²⁺ NANOWIRES EMBEDDED IN A SILICON POLYMER" A. Garrido Hernández ¹⁻² , A. Potdevin ² , <u>D. Boyer</u> ² , G. Chadeyron ² , A. García Murillo ¹ , F. <u>6</u> . J. Carrillo Romo ¹ and R. Mahiou ² ¹ Instituto Politácnico Nacional, CIITEC IPN, México D.F. México ² Institut de Chime de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the contamater technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the max		
GdPO ₄ :Eu ³⁺ AND Th ³⁺ NANOWIRES EMBEDDED IN A SILICON POLYMER" A. Garrido Hernández ¹⁵ , A. Potdevin ² , <u>D. Boyer</u> ² , G. Chadeyron ² , A. García Murillo ¹ , F. de J. Carrillo Romo ¹ and R. Mahiou ² ¹ Institute Politécnico Nacional, CIITEC IPN, México D.F. México ² Institute Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electrom microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties for compo	"SYNTHESIS OF FLUORESCENT	
GdPO ₄ :Eu ³ AND Tb ³ NANOWIRES EMBEDDED IN A SILICON POLYMER" A. Garrido Hernández ¹⁵ , A. Potdevin ⁷ , <u>D. Boyer</u> ² , G. Chadeyron ² , A. García Murilo ¹ , F. de J. Carrillo Romo ¹ and R. Mahiou ² ¹ Instituto Politécnico Nacional, CIITEC IPN, México D.F, México ² Institute Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ^{3±} and Tb ^{3±} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	NANOCOMPOSITES CONSTITUTED OF	
A. Garrido Hernández ^{1,2} , A. Potdevin ² , <u>D. Boyer²</u> , G. Chadeyron ² , A. García Murillo ¹ , F. de J. Carrillo Romo ¹ and R. Mahiou ² ¹ Instituto Politécnico Nacional, CIITEC IPN, México <u>D.F. México</u> ² Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPQ ₁ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
Chadeyron ² , A. García Murillo ¹ , F. de J. Carrillo Romo ¹ and R. Mahiou ² ¹ Instituto Politécnico Nacional, CITFEC IPN, México D.F. México ² Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPQ ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPQ, nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPQ ₄ annowires were succesfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent camporate films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPQ, nanomaterials into the silicon matrix. Finally, the influence of the GdPQ, shape on the maximum loading rate and on the optical properties of composite	IN A SILICON POLYMER"	
Chadeyron ² , A. García Murillo ¹ , F. de J. Carrillo Romo ¹ and R. Mahiou ² ¹ Instituto Politécnico Nacional, CIITEC IPN, México D.F. México ² Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPQ ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPQ, nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPQ ₄ annowires were succesfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent campoaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPQ, nanomaterials into the silicon matrix. Finally, the influence of the GdPQ, shape on the maximum loading rate and on the optical properties of composite	A. Garrido Hernández ^{1,2} , A. Potdevin ² , <u>D. Boyer²</u> , G.	
¹ Instituto Politécnico Nacional, CIITEC IPN, México D.F, México D.F, México J.F, UBP / ENSCCF. 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates [LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ²⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as cosolvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these florescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum todading rate and on the optical properties of composite		
D.F, México ² Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPQ ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPQ ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPQ ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPQ ₀ nanomaterials into the silicon matrix. Finally, the influence of the GdPQ ₄ shape on the maximum loading rate and on the optical properties of composite	$Romo^1$ and R. Mahiou ²	
D.F, México ² Institut de Chimie de Clermont-Ferrand, UMR 6296 CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPQ ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPQ ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPQ ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPQ ₀ nanomaterials into the silicon matrix. Finally, the influence of the GdPQ ₄ shape on the maximum loading rate and on the optical properties of composite		
³ Institut de Chimie de Clermont-Ferrand, UMR 6296 CNR8 / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPQ ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
CNRS / UBP / ENSCCF, 24 avenue des Landais, BP 80026, 63171 Aubiere Cedex - France Rare-earth doped lanthanides orthophosphates (LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glyccrol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
Rare-earth doped lanthanides orthophosphates (LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties or composite		
(LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	80026, 63171 Aubiere Cedex - France	
(LnPO ₄) represent a class of materials with significant technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
technological importance. Recently, new applications of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu ³⁺ and Tb ³⁺ doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties for composite	Rare-earth doped lanthanides orthophosphates	
of nanoscale phosphors, including biolabelling, optical imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ anomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	(LnPO ₄) represent a class of materials with significant	
imaging or luminescent transparent layers have attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	technological importance. Recently, new applications	
attracted intensive interests. As a result, several synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co-solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	of nanoscale phosphors, including biolabelling, optical	
synthesis methods leading to LnPO ₄ nanocrystals with controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	imaging or luminescent transparent layers have	
controlled shape have been developed, based on hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	attracted intensive interests. As a result, several	
hydrothermal reactions or thermolysis process for instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
Instance. It is well known that the reduction of particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ anowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co-solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum toading rate and on the optical properties of composite		
particles size or the modification of their shape can dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	hydrothermal reactions or thermolysis process for	
dramatically modify their physico-chemical properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
properties. In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
In this work Eu^{3+} and Tb^{3+} doped GdPO ₄ nanowires were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite	dramatically modify their physico-chemical	
were successfully synthetized by a new hydrothermal method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
method. The particles morphology was controlled by changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
changing different parameters like the pH and the synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
synthesis temperature or by using the glycerol as co- solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
solvent. Their structural characterization was performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
performed by X-ray diffraction analyses and by infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
infrared spectroscopy. Depending on the synthesis conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of GdPO ₄ nanomaterials into the silicon matrix. Finally, the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
conditions, transmission electron microscopy images have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
have revealed the achievement of hexagonal nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
nanoparticles or nanowires with narrow size distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
distributions. Their photoluminescent properties were investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
investigated and compared upon excitation in the UV range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
range. Luminescent composite films were prepared by dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
dispersing these fluorescent nanomaterials in a silicon matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
matrix by the coatmaster technique. SEM observations were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
were carried out to evidence the incorporation of $GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
$GdPO_4$ nanomaterials into the silicon matrix. Finally, the influence of the $GdPO_4$ shape on the maximum loading rate and on the optical properties of composite		
the influence of the GdPO ₄ shape on the maximum loading rate and on the optical properties of composite		
loading rate and on the optical properties of composite		
films was studied.		
	films was studied.	