279
Enabling the Next Generation of High Energy Lithium-Ion Battery Cathodes
This presentation will discuss insights into the atomic-level structure and transformation mechanisms of lithium-transition-metal-oxide cathode materials. These mechanisms explain, in part, the failure modes of layered cathodes at high states of delithiation. Furthermore, a discussion on a variety of elemental and structural compositions will be given. For example, unique layered, layered-layered, spinel, and layered-layered-spinel structures and chemistries will be presented that are pushing the boundaries of current Li-ion technology.
Future directions and research in further enabling these new systems will also be discussed.
Acknowledgment
Support from the Vehicle Technologies Program, Hybrid and Electric Systems, in particular, David Howell, Peter Faguy, and Tien Duong at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, is gratefully acknowledged.
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.