155
Charging-Discharging Phenomena on P2-Na2/3Co2/3Mn1/3O2 Observed by X-ray Absorption Spectroscopy
Charging-Discharging Phenomena on P2-Na2/3Co2/3Mn1/3O2 Observed by X-ray Absorption Spectroscopy
Thursday, 9 October 2014: 11:20
Sunrise, 2nd Floor, Galactic Ballroom 1 (Moon Palace Resort)
Charging-discharging phenomena of P2-Na2/3Co2/3Mn1/3O2 prepared by a co-precipitation method were investigated by ex situ and in situ X-ray absorption spectroscopy [1, 2]. The electronic transitions at the O K-edge and the charge compensation mechanism, during the sodium intercalation process, were elucidated by combining Density Function Theory (DFT) calculations and X-ray absorption spectroscopy (XAS) data. The pre-edge of the oxygen K-edge moves to higher energy while the integrated intensity dramatically decreases, indicating that the population of holes in O 2p states is reduced with increasing numbers of sodium ions. From the K-edge and L-edge observations, the oxidation states of pristine Co and Mn were determined to be +III and +IV, respectively. The absorption energy shifts to lower positions during the discharging process for both the Co and Mn edges, suggesting that the redox pairs, i.e. Co3+/Co2+ and Mn4+/Mn3+, are both involved in the reaction.
[1] J.-H. Cheng, C.-J. Pan, J.-F. Lee, J.-M. Chen, M. Guignard, C. Delmas, D. Carlier, and B.-J. Hwang, Chem. Mater., 26 (2014) 1219–1225.
[2] D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, B. J. Hwang and C. Delmas, Dalton Trans.,40 (2011), 9306.