52
Invited: the Aprotic Li-O2 Battery: O2 Reduction Mechanisms

Monday, 6 October 2014: 10:00
Sunrise, 2nd Floor, Galactic Ballroom 1 (Moon Palace Resort)
L. Johnson (University of St Andrews), C. Li (University of St Andrews andInstitute forChemistry and Technology of Materials), Z. Liu, Y. Chen (University of St Andrews), S. A. Freunberger (Christian Doppler Laboratory for Lithium Batteries, Institute for Chemistry and Technology of Materials,TU Graz), and P. G. Bruce (University of St. Andrews)
While O2 reduction in aqueous environments has been studied extensively for many decades, O2 reduction in aprotic solvents has received much less attention. One spin-off of the recent interest in rechargeable Li-O2 batteries, Fig. 1,1,2 based on aprotic electrolytes is that it has highlighted the importance of understanding the fundamental mechanisms of O2 reduction in such a medium.3-10 Indeed understanding the mechanisms of O2 reduction are essential if progress is to be made towards realizing the potential of the rechargeable aprotic lithium-O2 battery.1,2

A number of authors have made important contributions to understanding O2 reduction in non-aqueous electrolytes.3-5,7 We have combined a range of electrochemical, spectroscopic and microscopy methods to investigate the mechanism of electrochemical O2 reduction in aprotic electrolytes. The results of these studies will be presented, along with the implications of the results for the future of rechargeable Li-O2 batteries.

References

(1) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat Materials 2012, 11, 19.

(2) Li, F.; Zhang, T.; Zhou, H. Energy & Environmental Science 2013, 6, 1125.

(3) Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Energy & Environmental Science 2013, 6, 1772.

(4) Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. The Journal of Physical Chemistry Letters 2013, 4, 4217.

(5) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. The Journal of Physical Chemistry C 2012, 116, 23897.

(6) Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. The Journal of Physical Chemistry Letters 2013, 4, 1060.

(7) Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Journal of The Electrochemical Society 2013, 160, A259.

(8) Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angewandte Chemie International Edition 2011, 50, 6351.

(9) Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. The Journal of Physical Chemistry Letters 2012, 4, 127.

(10) Zhai, D.; Wang, H.-H.; Yang, J.; Lau, K. C.; Li, K.; Curtiss, L. A.; Amine, K. Journal of the American Chemical Society 2013.