1025
A New Binding Mode in the Dynamic Coordination Chemistry of Porphyrins

Wednesday, 27 May 2015: 14:40
Lake Michigan (Hilton Chicago)
B. Boitrel, S. Le Gac, and V. Ndoyom (UMR CNRS 6226, ISCR, Université de Rennes 1)
In our on-going research program dedicated to the coordination of various cations of medical interests, we have been studying different types of porphyrinic architectures.1 Among these cations, bismuth appears as a plausible candidate for alpha-radiotherapy.2 Considering the decay scheme of its 213 isotope, it is obvious that the coordination chemistry of bismuth3 and lead4 and to some extent, thallium are somehow related and exhibit some similarities.

For instance, we have shown that an unprecedented transmetalation mechanism involving a daughter radionuclide is expected to increase the rate of 213Bi incorporation leading to 1Bi.5

Moreover, we will detail and demonstrate that this peculiar behaviour is rationalized by a translocation-coupled transmetalation mechanism, leading to the formation of a dinuclear complex in which coexist the long-known out-of-plane (OOP) coordination mode and the newly reported hanging-atop (HAT) coordination mode.6

 This HAT binding mode is found in both homo- and heterobimetallic complexes with lead and bismuth (see both X-ray structures above) and represents the prerequisite for metal migration processes according to which these dinuclear complexes behave as allosteric Newton’s Cradle-like devices (NCD).7 This NCD behaviour can be extended to other metal complexes and controlled and/or initiated in different ways.8

 

 1. Lemon, CM; Brothers PJ.; Boitrel B. Dalton Trans. 2011, 40, 6591-6609.

2. Yao Z; Zhang M; Garmestani K; Axworthy DB; Mallett RW; et al. Clin. Cancer Res. 2004, 10, 3137-3146.

3. a) Michaudet L; Richard P; Boitrel B. Chem. Commun. 2000, 1589-1590. b) Boitrel B; Breede M.; Brothers PJ; Hodgson M; Michaudet L; Rickard CEF; Al Salim N Dalton Trans. 2003, 1803-1807.c) Halime Z; Michaudet L; Razavet M; Ruzié C; Boitrel B. Dalton Trans. 2003, 4250-4254. (d) Boitrel B; Halime Z; Michaudet L; Lachkar M; Toupet L. Chem. Commun. 2003, 2670-2671. (e) Halime Z; Lachkar M; Roisnel T; Furet E ; Halet J-F; Boitrel B, Angew. Chem. Int. Ed., 2007, 46, 5120-5124.

4. Halime Z; Michaudet L; Lachkar M; Brossier P; Boitrel B. Bioconjugate Chem., 2004, 15, 1193-1200.

5. Le Gac, S.; Najjari, B.; Motreff, N.; Remaud-Le Saec, P.; Faivre-Chauvet, A.; Dimanche-Boitrel, M.-T.; Morgenstern, A.; Bruchertseifer, F.; Lachkar, M.; Boitrel, B. Chem. Commun. 2011, 47, 8554 - 8556.

6. Le Gac S.; Najjari B.; Fusaro L.; Roisnel T.; Dorcet V.; Luhmer M.; Furet E.; Halet J.-F.; Boitrel B. Chem. Commun., 2012, 48, 3724-3726.

7. Najjari B.; Le Gac S.; Roisnel T.; Dorcet V.; Boitrel B. J. Am. Chem. Soc., 2012, 134, 16017-16032.

8. a) Le Gac, S.; Dorcet, V.; Fusaro, L.; Boitrel, B., Chem. Eur. J. 2013, 19, 13376-13386.  b) Le Gac, S.; Najjari, B.; Dorcet, V.; Roisnel, T.; Fusaro, L.; Luhmer, M.; Furet, E.; Halet, J.-F.; Boitrel, B., Chem. Eur. J. 2013, 19, 11021-11038. c) Le Gac, S.; Fusaro, L.; Roisnel, T.; Boitrel, B., J. Am. Chem. Soc. 2014, 136, 6698-6715.