2086
(Plenary) Printed Electrochemical Instruments for Biosensors
This keynote presentation will focus on meeting these challenges using amperometric and votammetric systems printed on paper or plastic substrates to deliver inexpensive instruments for a wide range of electroanalytical applications. This approach combines the sophistication of advanced electrochemical biosensors with a simple manufacturing technique to create a use-and-throw instrument. The system is manufactured under ambient conditions. All interconnections are printed and an anisotropic conductive glue is used for interconnection between the chip and conductors. A screen-printed manganese dioxide battery and a vertical electrochromic display are incorporated in the instrument. The display is paper-like in the sense that it works in reflective mode, that is, no backlight is used to light up the pixels. This integrated biosensing platform forms a workhorse in our hands for a variety of diagnostic systems including enzyme electrodes for multi-parametric diabetes monitoring and for the management of chronic kidney disease, electrochemical sensors for enzymes such as G6-P or amylase (a marker for stress), label-free affinity sensors for cancer markers and heart disease, aptasensors for cancer cells, DNA Sensors and robust devices based on imprinted and smart polymers. Using these technologies, we envision over-the-counter paper instruments for self-diagnosis of common diseases such as diabetes, kidney disease and urinary tract infection; inexpensive devices for use by caregivers or paramedics such as the ”Stressometer” or heart attack indicators; home kits to support people after transplant surgery or cancer treatment; smart cartons for pharmaceuticals; pocket tests for allergens, food toxicity, drinking water etc.; and strips or patches that communicate with mobile telecommunications. Realisation of these paradigm-changing new products requires the effective harnessing of emerging technology, inspired vision from clinical partners or others “users” and leading-edge engineering to design and produce functional systems in appropriate volumes at the right cost.
References
Turner, A.P.F. (2013). Biosensors: sense and sensibility. Chemical Society Reviews 42(8), 3184-3196.
Turner, A.P.F., Beni, V., Gifford, R., Norberg, P., Arven, P., Nilsson, D., Åhlin, J., Nordlinder, S. and Gustafsson, G. (2014). Printed Paper- and Plastic-based Electrochemical Instruments for Biosensors. 24th Anniversary World Congress on Biosensors – Biosensors 2014,27-30 May 2014, Melbourne, Australia. Elsevier.
Karimian, N., Turner, A.P.F. Tiwari, A. (2014). Electrochemical evaluation of a protein-imprinted polymer receptor. Biosensors and Bioelectronics 59, 160-165.
Kashefi-Kheyrabadi, l., Mehrgardi, M.A., Wiechec, E., Turner, A.P.F. and Tiwari, A. (2014). Ultrasensitive detection of human liver hepatocellular carcinoma (HepC2) cells using a label-free aptasensor. Analytical Chemistry 86, 4956-4960.
Parlak, O., Turner, A.P.F. and Tiwari, A. (2014). On/off-switchable zipper-like bioelectronics on a graphene interface. Advanced Materials 26, 482-486. DOI: 10.1002/adma.201303075
Sekretaryova, A., Vagin, M., Beni, V., Turner, A.P.F. and Karyakin, A. (2014). Unsubstituted Phenothiazine as a Superior Water-insoluble Mediator for Oxidases. Biosensors and Bioelectronics 53,275–282.
Shukla, S.K, Turner, A.P.F. and Tiwari, A. (2015). Cholesterol oxidase functionalised polyaniline/carbon nanotube hybrids for an amperometric biosensor. Journal of Nanoscience and Nanotechnology 15, 3373-3377.