Thursday, 2 June 2016: 10:00
Indigo 202 B (Hilton San Diego Bayfront)
In this talk, I will summarize the recent research on synthesis, characterization and applications of two-dimensional nanomaterials in my group. I will introduce the synthesis and characterization of novel low-dimensional nanomaterials, such as graphene-based composites including the first-time synthesized hexagonal-close packed (hcp) Au nanosheets (AuSSs) on graphene oxide, surface-induced phase transformation of AuSSs from hcp to face-centered cubic (fcc) structures, the synthesis of ultrathin fcc Au@Pt and Au@Pd rhombic nanoplates through the epitaxial growth of Pt and Pd on the hcp AuSSs, respectively, the first-time synthesis of 4H hexagonal phase Au nanoribbons (NRBs) and their phase transformation to fcc Au RNBs as well as the epitaxial growth of Ag, Pt and Pd on 4H Au NRBs to form the 4H/fcc Au@Ag, Au@Pt and Au@Pd core–shell NRBs, and the epitaxial growth of metal and semiconductor nanostructures on solution-processable transition metal dichalcogenide (TMD) nanoshees at ambient conditions, single- or few-layer metal dichalcogenide nanosheets and hybrid nanomaterials, the large-amount, uniform, ultrathin metal sulfide and selenide nanocrystals, other 2D nanomaterials, nanodots prepared from 2D nanomaterials, and self-assembled 2D nanosheets and chiral nanofibers from ultrathin low-dimensional nanomaterials. Then I will demonstrate the applications of these novel nanomaterials in chemical and bio-sensors, solar cells, water splitting, hydrogen evolution reaction, electric devices, memory devices, conductive electrodes, other clean energy, etc.