In this talk, I will highlight some of our recent work on the design and understanding of electrocatalytic Ir oxide based nanomaterials 1-12 and their liquid-solid interface at the atomic-scale. I will outline the preparation, characterization, and catalytic performance of Ir oxide model catalysts and nanostructured core-shell particles for water splitting and discuss fundamental aspects of their structure-activity relationships.
1. Nong, H. N.; Gan, L.; Willinger, E.; Teschner, D.; Strasser, P., IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem. Sci. 2014, 5, 2955-2963.
2. Nong, H. N.; Oh, H. S.; Reier, T.; Willinger, E.; Willinger, M. G.; Petkov, V.; Teschner, D.; Strasser, P., Oxide-Supported IrNiOx Core-Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting. Angew. Chem. 2015, 54, 2975-2979.
3. Oh, H.-S.; Nong, H. N.; Strasser, P., Preparation of Mesoporous Sb-, F-, and In-Doped SnO2 Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells. Adv. Funct. Mater. 2015, 25, 1074-1081.
4. Oh, H.-S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P., Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 2015, online DOI: 10.1039/C5SC00518C.
5. Cherevko, S.; Reier, T.; Zeradjanin, A. R.; Pawolek, Z.; Strasser, P.; J.J.Mayrhofer, K., Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 2014, 48, 81-85.
6. Reier, T.; Teschner, D.; Lunkenbein, T.; Bergmann, A.; Selve, S.; Kraehnert, R.; Schlogl, R.; Strasser, P., Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species. J. Electrochem. Soc. 2014, 161, F876-F882.
7. Johnson, B.; Girgdies, F.; Weinberg, G.; Rosenthal, D.; Knop-Gericke, A.; Schlögl, R.; Reier, T.; Strasser, P., Suitability of Simplified (Ir,Ti)Ox Films for Characterization during Electrocatalytic Oxygen Evolution Reaction. J. Phys. Chem. C 2013, 117, 25443-25450.
8. Reier, T.; Oezaslan, M.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catal. 2012, 2, 1765-1772.
9. Ortel, E.; Reier, T.; Strasser, P.; Kraehnert, R., Mesoporous IrO2 Films Templated by PEO-PB-PEO Block-Copolymers: Self-Assembly, Crystallization Behavior, and Electrocatalytic Performance. Chem. Mat. 2011, 23, 3201-3209.
10. Forgie, R.; Bugosh, G.; Neyerlin, K. C.; Liu, Z.; Strasser, P., Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media. Electrochem. Solid-State Lett. 2010, 13, B36.
11. Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P., The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010, 2, 724-761.
12. Neyerlin, K. C.; Bugosh, G.; Forgie, R.; Liu, Z.; Strasser, P., Combinatorial Study of High-Surface-Area Binary and Ternary Electrocatalysts for the Oxygen Evolution Reaction. J. Electrochem. Soc. 2009, 156, B363-B369.