In our group, we are interested in particular forms of graphene derivatives which are graphene oxide (GO) and reduced graphene oxide (r-GO). While a single layer of graphene absorbs 2.3% of the incident light,3 graphene oxide monolayer exhibits a weaker light absorption that makes it almost impossible to distinguish on Si/SiO2 surface. In 2007, Ruoff and co-workers were able to observe directly GO flakes using confocal microscopy; they even obtained higher contrast for GO than for graphene on Si/SiO2. For that they optimized a substrate by depositing silicon nitride layers from 60 to 70 nm on silicon.4
Here we introduce a novel optical microscopy technique based on the use of Anti-Reflecting and Absorbing (ARA) layers yielding to ultra-high contrast reflection imaging of graphene monolayers in air or in water. We name this technique “Backside Absorbing Layer Microscopy” (BALM) and we illustrate its efficiency by in-situ imaging graphene oxide (see Figure) and its chemical modification.
Reference:
(1) Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Appl. Phys. Lett. 2007, 91, 063124.
(2) Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. Nano Lett. 2007, 7, 2707-2710.
(3) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.
(4) Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watchrotone, S.; Hausner, M.; Ruoff, R. S. Nano Lett. 2007, 7, 3569-3575.