To this end, we have developed two types of light driven electrochemical reactors. In the first case, heavy post-transition metal electrodes such as indium, tin, bismuth or lead that are intrinsically catalytic for CO2 to formate are powered by a commercial photovoltaic system.6 This has the advantage that the PV system and the electrochemical reactor can be separately optimized, but the approach increases the necessary system engineering. Our second solar fuels approach is the use of a photoelectrochemical cell. In this system, one or both of the electrodes in the electrochemical reactor is composed of a semiconductor that absorbs visible light, generating a voltage in-situ, and a simplified balance of plant. In these systems the introduction of a dissolved aromatic amine catalyst is of utility. To date, we have found p-type semiconductor such as GaP 7 and certain metal oxides semiconductors having a delafossite structure such as CuFeO2,8 to be active for the chemistry of interest.
References:
(1) White, J. L.; Baruch, M. F.; III, J. E. P.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B.: Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chem. Rev. 2015, DOI: 10.1021/acs.chemrev.5b00370.
(2) Detweiler, Z. M.; White, J. L.; Bernasek, S. L.; Bocarsly, A. B.: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 2014, 30, 7593-600.
(3) Baruch, M. F.; Pander, J. E.; White, J. L.; Bocarsly, A. B.: Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy. ACS Catalysis 2015, 5, 3148-3156.
(4) Cole, E. E. B.; Baruch, M. F.; L'Esperance, R. P.; Kelly, M. T.; Lakkaraju, P. S.; Zeitler, E. L.; Bocarsly, A. B.: Substituent Effects in the Pyridinium Catalyzed Reduction of CO2 to Methanol: Further Mechanistic Insights. Top Catal 2015, 58, 15-22.
(5) Seshadri, G.; Lin, C.; Bocarsly, A. B.: A New Homogeneous Electrocatalyst for the Reduction of Carbon-Dioxide to Methanol at Low Overpotential. J Electroanal Chem 1994, 372, 145-150.
(6) White, J. L.; Herb, J. T.; Kaczur, J. J.; Majsztrik, P. W.; Bocarsly, A. B.: Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide. Journal of CO2 Utilization 2014, 7, 1-5.
(7) Yan, Y.; Gu, J.; Zeitler, E. L.; Bocarsly, A. B.: Photoelectrocatalytic Reduction of Carbon Dioxide. In Carbon Dioxide Utilisation: Closing the Carbon Cycle; Strying, P., Quadreilli, E. A., Armstrong, K., Eds.; Elsevier: London, 2015; pp 211-233.
(8) Gu, J.; Wuttig, A.; Krizan, J. W.; Hu, Y.; Detweiler, Z. M.; Cava, R. J.; Bocarsly, A. B.: Mg-Doped CuFeO2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide. The Journal of Physical Chemistry C 2013, 117, 12415-12422.