Current challenges for developing these highly demanded reversible electrochemical energy conversion and storage is the lack of effective cathode catalysts to simultaneously catalyzing both reactrions [7]. High reaction overpotentials, which mean sluggish kinetics, require catalysts containing large amounts of precious metals such as Pt and Ir to enhance reaction activity and durability. Unfortunately, high cost and limited supply of these precious metals have become a grand challenge for widespread applications of these clean energy technologies [8,9]. Even worse, the highly ORR active Pt is not a good catalyst for the OER. Likewise, the OER active Ir is not an optimal catalyst for the ORR. Thus, development of highly efficient ORR/OER bifunctional catalysts is desperately demanded for such clean energy technologies.
In this presentation, based on our ongoing researches [4,10-15], I will discuss several bifunctional oxide nanocomposite catalysts. They includes (1) oxygen-deficient perovskite oxides, (2) transition metal oxides, (3) highly stable and active nanocarbons, and (4) their integrated nanocomposites. In addition, perspectives on these catalysts, future approaches, and possible pathways to address current challenges are discussed as well.
Reference
[1] G. Wu, P. Zelenay, Acc. Chem. Res., 46 (2013) 1878-1889.
[2] Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater., 4 (2014) 1301415.
[3] Q. Li, R. Cao, J. Cho, G. Wu, Phys. Chem. Chem. Phys., 16 (2014) 13568-13582.
[4] S. Gupta, W. Kellogg, H. Xu, X. Liu, J. Cho, G. Wu, Chem. An Asian J., (2015) DOI: 10.1002/asia.201500640.
[5] J.S. Lee, S. Tai Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Advanced Energy Materials, 1 (2011) 34-50.
[6] G. Wu, N.H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J.K. Baldwin, P. Zelenay, ACS Nano, 6 (2012) 9764–9776.
[7] S. Gu, B. Xu, Y. Yan, Annual review of chemical and biomolecular engineering, 5 (2014) 429-454.
[8] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science, 332 (2011) 443-447.
[9] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Energy Environ. Sci., 4 (2011) 114-130.
[10] X. Liu, W. Liu, M. Ko, S. Chae, S. Park, A. Casimir, G. Wu, J. Cho, Adv. Func. Mater., 25 (2015) 5799–5808.
[11] X. Liu, M. Park, M.G. Kim, S. Gupta, G. Wu, J. Cho, Angew. Chem.-Int. Edit., 54 (2015) 9654–9658.
[12] C.-F. Chen, G. King, R.M. Dickerson, P.A. Papin, S. Gupta, W.R. Kellogg, G. Wu, Nano Energy, 13 (2015) 423–432.
[13] X. Liu, M. Park, M.G. Kim, S. Gupta, X.J. Wang, G. Wu, J. Cho, Nano Energy, (2015) doi:10.1016/j.nanoen.2015.1011.1030.
[14] X.L. Wang, Q. Li, H. Pan, Y. Lin, Y. Ke, H. Sheng, M.T. Swihart, G. Wu, Nanoscale, 7 (2015) 20290-20298.
[15] Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, G. Wu, Small, 11 (2015) 1443–1452.