In this work, we present a facile solvothermal synthesis of 3D hierarchical spinel core-shell microspheres with a porous structure and applied as efficient 3D electrocatalysts in nonaqueous Li-O2 batteries. Such unique structure can improve the availability of the catalytic sites and facilitate the diffusion of electrons and reactants. Due to the synergistic effect of high catalytic activity of the NiCo2O4 and unique porous core-shell, the 3D hiercarchical NiCo2O4 catalyst shows superior specific capacity, rate capability, and cycle stability in Li-O2 batteries. Furthermore, other spinel oxides (e.g. MnCo2O4 and ZnCo2O4) are also have been synthesized through similar procedures, suggesting the generality and feasibility of this facile strategy.
The superior catalytic performance of NiCo2O4 was further examined in Li-O2 batteries. It is found that the Li–O2 battery with the NiCo2O4 electrode exhibits rather stable specific capacities above 7000 mAh g-1carbon for five cycles and can keep specific capacities to be 6100 mAh g-1carbon after 10 cycles at a current density of 100 mA g-1carbon. Such performance can make NiCo2O4 core-shell microspheres as one of the best mixed metal oxides catalysts in Li-O2 batteries.
Remarkably, it is found that our strategy could be extended to fabricate other spinel catalyst electrodes, such as MnCo2O4 and ZnCo2O4, suggesting the generality and feasibility of this facile strategy.
In summary, we have demonstrated controlled synthesis of hierarchical spinel core-shell microspheres by a facile solvothermal method. The spinel microspheres constructed by porous nanoplates can act as high-performance catalysts in Li-O2 batteries. By taking advantage of the superior electrocatalytic activity and porous unique features, the as-prepared catalyst electrode exhibited low overpotentials, high rate capacity as well as excellent long-term cyclability. Significantly, this work offers exciting possibilities for the development of new functional materials in high-density storage devices
Acknowledgements
The authors are thankful for the support by funding from the Singapore National Research Foundation (NRF-CRP10-2012-06).