Tuesday, 31 May 2016: 12:10
Indigo 204 A (Hilton San Diego Bayfront)
Transition metal chalcogenides has been a heartthrob of solid state chemists owing to the richness of properties they exhibit as well as their structure-property correlation. In addition to their viable optoelectronic properties, it has been recently observed that some of these transition metal chalcogenide (especially selenides) show high electrocatalytic activities for oxygen evolution/reduction reactions (OER/ORR respectively) and hydrogen evolution reaction (HER). Recently we have formulated some new transition metal chalcogenide based compositions which show an enhanced catalytic activity for OER based on their d-electron occupancy and structural parameters.1 Among these the Ni-based selenide thin films and nanostructures show much better catalyst activity along with lower onset potential for O2 evolution outperforming the state-of-the-art precious metal based catalysts. It was also observed that doping other transitional metals in the Nickel selenide matrix led to enhancing catalyst efficiency. The catalysts were synthesized mainly through electrodeposition on different substrates like Au-coated glass, Au-coated Si as well as glassy carbon (GC). The nanostructured catalysts were made through chemical vapor deposition (CVD) and solvothermal reaction. In a separate approach nanorod and nanotube arrays of these electrocatalysts were grown through electrodeposition on lithographically patterned nanoelectrodes. Nanostructuring typically led to much better efficiency with low catalyst volume, with the nanorod/nanotube pattern producing the highest activity with lowest electrode coverage with the active material. The catalytic activities for OER, ORR and HER were investigated through detailed electrochemical measurements including linear scale voltammetry, chronoamperometry, Tafel slope analysis as well as determination of Faradaic efficiency through rotating ring disk electrode studies. Interestingly some of these selenides showed bifunctional or trifunctional nature showing efficient catalytic activity for OER-HER and OER-HER-ORR processes, respectively. In this talk we will present a systematic study of the selenide based electrocatalysts including binary (NixSey, CoxSey) as well as ternary chalcogenides, NixMySen (M = Fe, Co, Mn, Al) and investigating their catalytic activities for OER, HER, and ORR reactions. We will also discuss the effect of d-electron counts, electronic structure and morphology on the catalytic efficiency.
References
Swesi, A.; Masud, J.; Nath, M. Energy Environ. Sci. 2015 doi: 10.1039/C5EE02463C.