Improving durability of PEMFC by reducing the impact of operating conditions on electrode degradation

Vinaykumar Konduru, Srikanth Arisetty and Swami Kumaraguru

General Motors Company, Global Fuel Cell Business, 850 N Glenwood Avenue, Pontiac, MI 48340 USA

I01A-1067
240th ECS Meeting
Oct 10-14, 2021
Optimization of Low Loading Electrode

- Down-select MEA components such as catalyst, GDL, membrane etc.
- 2-3 rounds of design of experiments to optimize electrode performance to generate SOA MEA

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>2020 Targets</th>
<th>2020 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$/kW_{net}</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Q/ΔT</td>
<td>kW/°C</td>
<td>1.45</td>
<td>1.45 1.94</td>
</tr>
<tr>
<td>V at 0.8 V</td>
<td>mA/cm²</td>
<td>300</td>
<td>0.44 0.30</td>
</tr>
<tr>
<td>PD at 670 mV</td>
<td>mW/cm²</td>
<td>1000</td>
<td>1000 1275</td>
</tr>
<tr>
<td>Durability</td>
<td>Hours @ < 10% V loss</td>
<td>5000</td>
<td>*5000 *2000</td>
</tr>
<tr>
<td>Mass activity</td>
<td>A/mg_{PGM} at 0.9 V</td>
<td>> 0.44</td>
<td>0.65 0.65</td>
</tr>
<tr>
<td>PGM Content</td>
<td>g/kW rated mg/cm²_{MEA}</td>
<td>0.125</td>
<td>0.10 0.125</td>
</tr>
</tbody>
</table>

Electrode Durability: Conduct voltage cycling study on state-of-art MEA and map the operating conditions to minimize power degradation rate.
Multi-factor Design of Experiments
Test Protocol – 20 Run DoE

Test factors

<table>
<thead>
<tr>
<th>Cell Temp (°C)</th>
<th>RH (%)</th>
<th>Upper Potential (mV)</th>
<th>Upper Potential Hold time (s)</th>
<th>Test Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>40</td>
<td>850</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>75</td>
<td>70</td>
<td>900</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>950</td>
<td>5</td>
<td>C</td>
</tr>
</tbody>
</table>

Constant Test Parameters:

- Lower Potential: 0.6 V
- Lower Potential Hold Time: 1 sec
- Ramp rate: 0.35 V/s
- Environment: H₂/N₂

- 50cm² MEA
- Selection of MEAs with Pt loading within +/- 2%
Test Protocol

<table>
<thead>
<tr>
<th>Run Order</th>
<th>Temperature (°C)</th>
<th>RH (%)</th>
<th>Upper Potential (V)</th>
<th>Hold Time (s)</th>
<th>Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>100</td>
<td>0.85</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>40</td>
<td>0.95</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>40</td>
<td>0.95</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>100</td>
<td>0.85</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>70</td>
<td>0.90</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>100</td>
<td>0.85</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>95</td>
<td>100</td>
<td>0.85</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>70</td>
<td>0.90</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>95</td>
<td>40</td>
<td>0.95</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>40</td>
<td>0.95</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>95</td>
<td>40</td>
<td>0.85</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>95</td>
<td>100</td>
<td>0.95</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>75</td>
<td>70</td>
<td>0.90</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>55</td>
<td>100</td>
<td>0.95</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>55</td>
<td>40</td>
<td>0.85</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>55</td>
<td>100</td>
<td>0.95</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>17</td>
<td>95</td>
<td>40</td>
<td>0.85</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>18</td>
<td>55</td>
<td>40</td>
<td>0.85</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>95</td>
<td>100</td>
<td>0.95</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>70</td>
<td>0.90</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

Individual Test Parameters

20 Voltage Cycle Waveform used in DOE
Test Protocol

Low-P Dry: 80 °C, 32% RH, 150 kPa_{abs}

Low-P Wet: 80 °C, 100% RH, 170 kPa_{abs}

High-P Wet: 93.5 °C, 100% RH, 250 kPa_{abs}

30k x2 (60k total)

20 Voltage Cycle Waveform used in DOE
• BOL test-to-test variations within ± 4 mV in High-P-Wet conditions
• Impact of Test stand variations on experimental results is expected to be small
Clear trend between ECA Loss and Voltage Loss is observed
- Benign conditions show very little ECA, mass activity, and performance loss
- No data for 3333 (last case) after 60k cycles due to severe performance loss

Note:
- Labels are ordered as T, RH, UP, and HT (reading bottom to top on X-axis)
- 1, 2, and 3 represent the test factor level
• Clear trend between ECA Loss and Voltage Loss is observed
• Benign conditions show very little ECA, mass activity, and performance loss

Note:
• Labels are ordered as T, RH, UP and HT (reading bottom to top on X-axis)
• 1, 2 and 3 represent the test factor level
ECA vs Voltage Loss

Vertical lines represent 10% voltage loss from BOL
ECA vs Voltage Loss

- Vertical lines represent 10% voltage loss from BOL
- ~20% ECA Loss at Low Pressure Conditions
- ~50% ECA Loss at High Pressure Conditions
Ex-situ Post-Mortem Analysis
Material Analysis

- Largely minimal changes from BOL in benign to moderate conditions
- Significant Pt movement towards membrane under severe operating conditions

- Most samples show small variation in mean particle size diameter
- Samples with large performance losses show significant bimodal distribution
Statistical Model
Statistical Model

- Half-normal plot identifying the significant test factors that impact ECA loss (after 60k cycles)
- Factors with higher score and coefficients represent the significant factors
- **UP, RH and T** along with their interactions RH:UP and T:RH were found to be the statistically significant factors

Statistical Model:

- ECA Loss (m2/gPt) = (-0.69789 - 0.0138*T - 0.26655*RH + 2.171011*UP + 0.000649*(T*RH) + 0.277891*(RH*UP))2
- V Loss (mV/kCycle) = exp(2.649229 - 0.01459*T - 0.21813*RH - 4.18264*UP + 0.000394*T*RH + 0.236053*RH*UP) – 0.5
Predicted Operating conditions to limit losses

- Based on both ECA Loss vs. V Loss data from this DOE and performance model.
- To achieve target 10% V Loss or lower (@ 150 Kpa condition), less than 20% ECA Loss should be maintained at end of test (EOT).
- For 10% VLoss @ 250 Kpa condition, less than ~ 55% ECA loss should be maintained at EOT.
Degradation Model
PtO Model

- Single equations to calculate the rate of change in PtO coverage, no fast and slow slope
- The model coefficients are solved for based on PtCo electrode data
- Addition of equation for build up of PtO₂

\[
\text{PtO} + \text{H}_2\text{O} \leftrightarrow \text{PtO} + 2\text{H}^+ + 2\text{e}^- \quad (1)
\]
\[
i_{\text{PtO}} = k_{\text{PtO}} \left[(1 - \theta_{\text{PtO}} - \theta_{\text{PtO}_2}) \text{RH} e^{\frac{23210\alpha_1}{T}(E - E^0(\text{PtO}))} e^{\frac{\omega_{\text{PtO}}\theta_{\text{PtO}}}{RT}} - \theta_{\text{PtO}} c_{H^+}^0 e^{\frac{23210(1-\alpha_1)}{T}(E - E^0(\text{PtO}))} e^{\frac{-\omega_{\text{PtO}}\theta_{\text{PtO}}}{RT}} \right]
\]
\[
\text{PtO} + \text{H}_2\text{O} \leftrightarrow \text{PtO}_2 + 2\text{H}^+ + 2\text{e}^- \quad (2)
\]
\[
i_{\text{PtO}_2} = k_{\text{PtO}_2} \left[\theta_{\text{PtO}} \text{RH} e^{\frac{23210\alpha_2}{T}(E - E^0(\text{PtO}_2))} e^{\frac{\omega_{\text{PtO}}\theta_{\text{PtO}_2}}{RT}} - \theta_{\text{PtO}_2} c_{H^+}^0 e^{\frac{23210(1-\alpha_2)}{T}(E - E^0(\text{PtO}_2))} e^{\frac{-\omega_{\text{PtO}}\theta_{\text{PtO}_2}}{RT}} \right]
\]

Parameters that changes with temperature

- \(E^0(\text{PtO}) = E^{00}(\text{PtO}) + \frac{\Delta E}{\Delta T} (T - 353) \)
- \(k_{\text{PtO}} = k_{\text{PtO}}^0 e^{\frac{\Delta H_{\text{PtO}}}{T}} \left(\frac{1}{298} \right) \)
- \(k_{\text{PtO}_2} = k_{\text{PtO}_2}^0 e^{\frac{\Delta H_{\text{PtO}_2}}{T}} \left(\frac{1}{298} \right) \)

Parameters that changes with RH

\[
C_{H^+} = \frac{1}{558.4 + 18 \lambda}
\]

\[
X_{\text{PtO}} = \theta_{\text{PtO}} + \theta_{\text{PtO}_2}
\]

Equations to get \(\theta_{\text{PtO}} \) and \(\theta_{\text{PtO}_2} \)

\[
\theta_{\text{PtO}}^{\text{new}} = \theta_{\text{PtO}}^{\text{old}} + \Delta \frac{i_{\text{PtO}} - i_{\text{PtO}_2}}{0.9942 A_{\text{Pt}} L_{\text{Pt}}}
\]
\[
\theta_{\text{PtO}_2}^{\text{new}} = \theta_{\text{PtO}_2}^{\text{old}} + \Delta \frac{i_{\text{PtO}_2}}{0.9942 A_{\text{Pt}} L_{\text{Pt}}}
\]

Srikanth Arisetty et. Al. 2015 ECS Trans. 69 273
Oxide based corrections for ECA

- Damage factor (DamECA(t)) for ECA is calculated as a function of oxide current (i_{PtO/PtO2}) and oxide coverage (θ_{PtO/PtO2})
- ECA loss can be calculated from Damage factor
- Temperature and RH are intrinsically integrated into the oxide coverage and oxide current
- Coefficients are calculated by fitting model to the 20-run doe data

\[
DamECA(t) = \int_{t=0}^{T} (i_{PtO}^{n2} \theta_{PtO}^{n1} + i_{PtO2}^{n4} \theta_{PtO2}^{n3}) dt
\]

ECA:

\[
A_{Pt}(t) = A_{Pt}(t = 0) e^{-k_{z}DamECA(t)}
\]

Damage Factor:

\[
ECA predictions Steps:
\]

- Drive cycle simulations \(\rightarrow i_{PtO/PtO2}\) and \(θ_{PtO/PtO2}\)
- Calculate Damage factor
- Calculate ECA loss over time

Srikanth Arisetty et al 2015 ECS Trans. 69 273
Degradation Model

<table>
<thead>
<tr>
<th>UPL</th>
<th>Temperature</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>0.875</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>0.85</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>0.825</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Using previous approach, 60-run full parametric DOE was run
- UPL and Temperature limits were imposed for the entire cycle
- RH values were varied only for the 1st part of the cycle (wet), while the 2nd part was kept at 40%RH for all cycles

Table P.7, https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
Degradation Model

<table>
<thead>
<tr>
<th>UPL</th>
<th>Temperature</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>0.875</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>0.85</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>0.825</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Using previous approach, 60-run parametric DOE simulations were run
- UPL and Temperature limits were imposed for the entire cycle
- RH values were varied only for the 1st part of the cycle (wet), while the 2nd part was kept at 40%RH for all cycles

Table P.7, https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
Degradation Model - Results

• Contour maps show the estimated ECA (m^2/gPt) after 5000 hrs
• Minimum ECA limited to 14 m^2/gPt
Contour maps show the estimated ECA (m^2/gPt) after 5000 hrs.

- Minimum ECA limited to 14 m^2/gPt
- Highlighted areas represent optimal zone of operation for fixed UPL.
Drive Cycle Testing
Drive Cycle Tests (H₂-Air)

<table>
<thead>
<tr>
<th>Test</th>
<th>Max Cycle Potential (V)</th>
<th>Max. Temperature (°C)</th>
<th>Max. RH (%)</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Drive Cycle</td>
<td>-</td>
<td>85</td>
<td>93</td>
<td>1000</td>
</tr>
<tr>
<td>Drive Cycle 1</td>
<td>0.90</td>
<td>85</td>
<td>93</td>
<td>1400*</td>
</tr>
<tr>
<td>Drive Cycle 2</td>
<td>0.85</td>
<td>85</td>
<td>93</td>
<td>1000</td>
</tr>
<tr>
<td>Drive Cycle 3</td>
<td>0.85</td>
<td>75</td>
<td>70</td>
<td>2800</td>
</tr>
</tbody>
</table>

- 4 drive cycles (1 DOE drive cycle and 3 modified drive cycles) were selected and ran on single cell with 50cm² MEA
- Drive cycle 3 was selected based on projections from the Pt-oxide based model
- Drive cycle 1 (0.90V) limit failed after approx. 1400 hours
- Drive cycle 4 continues to run with less than 5% performance loss in High-P Wet conditions
Summary

- Multifactor design of experiments were used to map the impact of operating conditions.
- Operation conditions that can provide reduced ECA Losses were demonstrated.
- Statistical model and Pt-Oxide based damage model were developed to predict ECA and voltage losses.
- Single cell drive cycle tests validate that significant improvements in durability of electrodes can be achieved by optimal selection of operating conditions.
Acknowledgement

• This work was partially funded by DOE award DE-EE0007651 and GM-NREL CRADA # CRD-14-539
Thank You
Improving durability of PEMFC by reducing the impact of operating conditions on electrode degradation

Vinaykumar Konduru, Srikanth Arisetty and Swami Kumaraguru

General Motors Company, Global Fuel Cell Business, 850 N Glenwood Avenue, Pontiac, MI 48340 USA

I01A-1067
240th ECS Meeting
Oct 10-14, 2021