811
(Invited) On-Surface Synthesis of Acene Polymers

Monday, 30 May 2022: 11:00
West Meeting Room 202 (Vancouver Convention Center)
J. Santos (Universidad Complutense de Madrid), P. Jelínek (Institute of Physics of the Czech Academy of Sciences), D. Ecija (IMDEA Nanoscience), and N. Martin (Universidad Complutense de Madrid)
The design and study of π-conjugated polymers has received great attention along the last decades. The relevant optical and electronic properties stemming from their delocalised π-electrons allow for a number of applications in the emerging field of organic electronics. However, the inherent limited solubility of planar π-conjugated systems hinders their development, forcing chemists to introduce ancillary solubilising side-chains. On the other hand, ultrahigh-vacuum on-surface synthesis has become a powerful discipline that enables designing with atomistic precision a new plethora of molecular compounds, polymers, and nanomaterials that otherwise are unachievable by conventional organic chemistry.

Herein we present a novel on-surface chemical transformation that allows obtaining π-conjugated acene polymers from simple aromatic molecules carrying =CBr2 functionalities. The deposition of such precursors on an Au(111) surface gives rise to close-packed assemblies. Thermal annealing promotes the debromination of the species that thereafter homocouple and give rise to long anthracene wires linked by acetylene bridges, featuring a bandgap of 1.5 eV (see figure below).

When larger acenes or periacenes are used (i.e. pentacene, bisanthene, peripentacene) the resulting polymers undergo dramatic structural and electronic changes. Non-contact-AFM evince that the benzoid subunits evolve from aromatic (anthracene) to quinoid (pentacene, bisanthene...), while the alkyne linkers turn into cumulenic. The STM images allow witnessing the HOMO-LUMO levels crossing from anthracene to pentacene. This swap destabilises the aromatic structure and enables a biradical-quinoid one, that permit almost vanishing bandgaps below 0.35 eV. These findings can also be rationalised by topological band gap theory: DFT, tight binding and GW calculations predict that polymers these quasi-metallic polymers exhibit a topologically non-trivial electronic structure. Our results herald novel pathways to engineer π-conjugated polymers on solid surfaces, addressing the relevant family of acenes and, thus, contributing to develop the field of on-surface chemistry and to steer the design of modern low bandgap polymers.