Here, we show that the discrepancy is likely not due to a single factor alone, but it is made up of several contributing factors. These include surface pre-treatments of the polycrystalline copper [7, 8] (such as sanding, mechanical polishing, electropolishing and etching), natural variation in the crystal orientation on the copper surface [9-11], and the way that iR compensation is applied and subsequently corrected for post-experiment. It was found that the faradaic efficiency for methane and ethylene could increase by up to 140% and 124%, respectively, over a 0.035 V range, which if iR compensation is not correctly adjusted for post experiment, could lead to significant errors in the reported results. We also show that the solution resistance can change by 51% over a 6 hour period of electrolysis, requiring the solution resistance to be regularly measured throughout the experiment to be able to correctly adjust the potential post experiment. Single crystal CO2RR experiments have also shown differences between the mechanism for reducing CO on a Cu(111) surface, compared to a Cu(100) surface, which leads to different activities and selectivities [12]. Interestingly, we show electron backscatter diffraction (EBSD) measurements for different pieces of the same polycrystalline copper that have different crystal orientation distributions.
References
[1] S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev., 119 (2019) 7610−7672.
[2] M. Ma, K. Djanashvili, W. A. Smith, Angew. Chem. Int., 55 (2016) 6680−6684.
[3] L. Mandal, K. R. Yang, M. R. Motapothula, D. Ren, P. Lobaccaro, A. Patra, M. Sherburne, V. S. Batista, B. S. Yeo, J. W. Ager, J. Martin, T. Venkatesan, ACS Appl. Mater. Interfaces, 10 (2018) 8574−8584.
[4] D. Raciti, K. J. Livi, C. Wang, Nano Lett., 15 (2015) 6829−6835.
[5] A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B. H. Huang, J. W. Ager, R. Buonsanti, Angew. Chem. Int., 55 (2016) 5789−5792.
[6] H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. R. Cuenya, Nat. Comms. 7 (2016) 12123.
[7] Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 85 (1989) 2309−2326.
[8] K. Jiang, Y. Huang, G. Zeng, F. M. Toma, W. A. Goddard, A. T. Bell, ACS Energy Lett., 5 (2020) 1206−1214.
[9] I. Takahashi, O. Koga, N. Hoshi, Y. Hori, J. Electroanal. Chem., 533 (2002) 135−143.
[10] Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Phys. Chem. B, 106 (2002) 15−17.
[11] Y. Huang, A. D. Handoko, P. Hirunsit, B. S. Yeo, ACS Catal. 7 (2017) 1749−1756.
[12] K. J. P. Schouten, Z. Qin, E. Perez Gallent, M. T. M. Koper, J. Am. Chem. Soc., 134 (2012) 9864−9867.