Tuesday, 31 May 2022: 09:20
West Meeting Room 204 (Vancouver Convention Center)
Much understanding exists regarding chirality-dependent properties of single-wall carbon nanotubes (SWCNTs), primarily obtained through single-tube studies. However, macroscopic manifestations of chirality dependence have been limited, especially in electronic transport. Here, recent progress in our optical and electronic transport studies of single-chirality SWCNT thin films will be reviewed. We observed pronounced chirality-dependent electronic localization in temperature and magnetic field dependent conductivity measurements on macroscopic films of single-chirality SWCNTs [1]. We also performed optical absorption measurements in aligned single-chirality (6,5) SWCNT films, and through comparison with detailed theoretical calculations based on the Boltzmann scattering equation, we demonstrated that the background absorption is due to phonon-assisted transitions from the semiconductor vacuum to finite-momentum continuum states of excitons [2]. Furthermore, we conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting SWCNTs and found that excitons autoionize, i.e., spontaneously dissociate into electrons and holes [3]. Some of these studies were enabled by our recent improvement of the controlled vacuum filtration technique [4,5], which allows us to fabricate wafer-scale aligned SWCNTs with extremely anisotropic optical properties [6-9].
- W. Gao et al., “Band Structure Dependent Electronic Localization in Macroscopic Films of Single-Chirality Single-Wall Carbon Nanotubes,” Carbon 183, 774 (2021).
- S. Dal Forno et al., “Origin of the Background Absorption in Carbon Nanotubes: Phonon-Assisted Excitonic Continuum,” Carbon 186, 465 (2021).
- F. R. G. Bagsican et al., “Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication,” Nano Letters 20, 3098 (2020).
- X. He et al., “Wafer-Scale Monodomain Films of Spontaneously Aligned Single-Walled Carbon Nanotubes,” Nature Nanotechnology 11, 633 (2016).
- W. Gao and J. Kono, “Science and Applications of Wafer-Scale Crystalline Carbon Nanotube Films Prepared through Controlled Vacuum Filtration,” Royal Society Open Science 6, 181605 (2019).
- F. Katsutani et al., “Direct Observation of Cross-Polarized Excitons in Aligned Single-Chirality Single-Wall Carbon Nanotubes,” Physical Review B 99, 035426 (2019).
- W. Gao et al., “Macroscopically Aligned Carbon Nanotubes as a Refractory Platform for Hyperbolic Thermal Emitters,” ACS Photonics 6, 1602 (2019).
- N. Komatsu et al., “Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration,” Nano Letters 20, 2332 (2020).
- A. Baydin et al., “Giant Terahertz Polarization Rotation in Ultrathin Films of Aligned Carbon Nanotubes,” Optica 8, 760 (2021).