Herein we present a new "induction heating method" for the preparation of N-doped reduced graphene oxide derivatives (N-rGOD) with a high specific surface area. N-rGOD was prepared in a two-step process from commercially available graphites (Gs) and multi-walled carbon nanotubes (MWCNTs). In the first step, graphite oxide precursors were synthesized from Gs or MWCNTs by the improved Hummers method. In the second step, the graphite oxide precursors were subjected to rapid heat treatment by induction heating in a reductive ammonia atmosphere. Due to the rapid thermal expansion of graphite oxide, massive exfoliation occurred to obtain N-rGOD with higher specific surface area.4 These materials were tested for energy storage and conversion applications and showed excellent properties.
References
(1) Xu, H.; Ma, L.; Jin, Z. Nitrogen-Doped Graphene: Synthesis, Characterizations and Energy Applications. J. Energy Chem. 2018, 27 (1), 146–160. https://doi.org/10.1016/j.jechem.2017.12.006.
(2) Nosan, M.; Löffler, M.; Jerman, I.; Kolar, M.; Katsounaros, I.; Genorio, B. Understanding the Oxygen Reduction Reaction Activity of Quasi-1D and 2D N-Doped Heat-Treated Graphene Oxide Catalysts with Inherent Metal Impurities. ACS Appl. Energy Mater. 2021. https://doi.org/10.1021/acsaem.1c00026.
(3) Alazmi, A.; El Tall, O.; Rasul, S.; Hedhili, M. N.; Patole, S. P.; Costa, P. M. F. J. A Process to Enhance the Specific Surface Area and Capacitance of Hydrothermally Reduced Graphene Oxide. Nanoscale 2016, 8 (41), 17782–17787. https://doi.org/10.1039/c6nr04426c.
(4) Qiu, Y.; Guo, F.; Hurt, R.; Külaots, I. Explosive Thermal Reduction of Graphene Oxide-Based Materials: Mechanism and Safety Implications. Carbon N. Y. 2014, 72, 215–223. https://doi.org/10.1016/j.carbon.2014.02.005.