The battery desalination cells feature a symmetric design, with two NiHCF electrodes at opposite state-of-charge (SOC), capable of intercalating Na+-ions into their crystal structure. The electrodes are separated by an anion exchange membrane, a porous functionalized polyether ether ketone (PEEK) membrane, that only permits negatively charged ions, e.g., Cl--ions, to pass. Two feed water streams with 20 mM NaCl enter the symmetric cell on either side (see Figure 1a). During charge of the symmetric cell, incoming Na+-ions are removed from one water stream and intercalated into the NiHCF electrode at low SOC. Simultaneously, Na+-ions are deintercalated from the opposite NiHCF electrode at high SOC. In order to maintain charge neutrality, Cl‑-ions cross the anion exchange membrane. Thus, during every charge/discharge cycle, one water stream is desalinated forming a freshwater stream, while the other is enriched in NaCl forming a brine waste stream (see Figure 1b).
In order to quantify performance and lifetime of the novel battery-type water desalination cells, we define and measure objective metrics. We see that energy consumption (Wh/l) and productivity (l/h/m2) of NiHCF/NiHCF cells are superior to cells based on membrane capacity deionization (mCDI). Stable charge/discharge cycling of NiHCF/NiHCF cells can be achieved for over 500 cycles with NaCl feed water, but rapid aging is observed with CaCl2 feeds. Synchrotron-based characterization of NiHCF/NiHCF cells is used to elucidate the reason for capacity fade. X-ray absorption spectroscopy and X-ray fluorescence spectroscopy reveal Fe dissolution from the NiHCF active material as a primary aging mode with CaCl2 water feeds.
References
- Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).
- Wessells, C. D. et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6, 1688–1694 (2012).
- Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 1–9 (2014).
- Firouzi, A. et al. Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun. 9, (2018).
- Pasta, M., Wessells, C. D., Cui, Y. & La Mantia, F. A desalination battery. Nano Lett. 12, 839–843 (2012).
- Lee, J., Kim, S. & Yoon, J. Rocking Chair Desalination Battery Based on Prussian Blue Electrodes. ACS Omega 2, 1653–1659 (2017).
- Kim, T., Gorski, C. A. & Logan, B. E. Low Energy Desalination Using Battery Electrode Deionization. Environ. Sci. Technol. Lett. 4, 444–449 (2017).
- Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M. & Smith, K. C. Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochim. Acta 255, 369–378 (2017).
- Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. mu. The state of desalination and brine production: A global outlook. Sci. Total Environ. 657, 1343–1356 (2019).
- Metzger, M. et al. Techno-economic analysis of capacitive and intercalative water deionization. Energy Environ. Sci. 13, 1544–1560 (2020).
- Sebti, E. et al. Removal of Na+ and Ca2+ with Prussian blue analogue electrodes for brackish water desalination. Desalination 487, (2020).
- Besli, M. M. et al. Performance and lifetime of intercalative water deionization cells for mono- and divalent ion removal. Desalination 517, 115218 (2021).
Figure 1. (a) Battery-type water desalination approach in symmetric NiHCF/NiHCF cells with two salt water streams entering the cell and a brine stream and freshwater stream exiting the cell. (b) During galvanostatic charge/discharge cycling the salt concentrations of brine and freshwater stream can be monitored with microfluidic operando conductivity probes to determine important performance metrics.