CO is a key intermediate in the electro-oxidation of energy carrying fuels and known to act as a catalyst poison. Single-crystal Cu(111) model catalysts can efficiently electro-oxidize CO in alkaline media,2 where strong surface structural changes are observed under reaction conditions with electrochemical scanning tunneling microscopy (EC-STM). Supported by first-principles microkinetic modelling, we have shown that the concomitant presence of high-energy undercoordinated Cu structures at the surface is a prerequisite for the high activity.
In water electrolyzers, it is possible to produce H2 in the course of the hydrogen evolution reaction (HER), which was studied with Ni(OH)2 and Co(OH)2 modified Cu(111) electrodes in alkaline media.3 Strong morphological changes upon adatom modification lead to a significant HER rate enhancement. Intriguingly, this is induced through a decrease of the electric field strength negative of the pzfc. This implies an easier reorganization of the interfacial water molecules facilitating charge transfer through the double layer, and thus enhancing the efficiency of electrocatalytic reactions. The tendency of Cu(111) to restructure is found to dominate its electrochemical properties. The structural changes of the electrode surface are intimately related to the electric field at the solid/liquid interface and to its electrocatalytic activity, in general.
References:
[1] A. Auer, X. Ding, A. S. Bandarenka, J. Kunze-Liebhäuser, J. Phys. Chem. C 125 (2021) 5020.
[2] A. Auer, M. Andersen, E.M. Wernig, N.G. Hörmann, N. Buller, K. Reuter, J. Kunze-Liebhäuser, Nature Catal. 3 (2020) 797.
[3] A. Auer, F.J. Sarabia, D. Winkler, C. Griesser, V. Climent, J.M. Feliu, J. Kunze-Liebhäuser, ACS Catal. 11 (2021) 10324.