We previously demonstrated that the electrochemical oxidation (1.0 V vs. SCE) of 1,4-dihydroxypillar[6]arene (P[HQ]6) in methanol afforded micrometer scale hexagonal cylindrical depositions on electrode surfaces, which were composed of partially oxidized P[HQ]6-m[Q]m (composed of both hydroquinone and benzoquinone units) aggregating via quinhydrone formation.2
In this work, we successfully synthesized P[Q]6 for the first time by oxidation of its hydroquinone precursor P[HQ]6. Electrochemical oxidation (1.2 V vs. SCE) of P[HQ]6 in methanol gave the similar hexagonal cylindrical crystal of P[Q]6 evidenced by single crystal X-ray diffraction, NMR and HRMS analyses. In the crystallographic data, all quinone moieties seem to have intermolecular CH-O interaction between adjacent macrocycles, resulting in the formation of a hexagonal packing structure. In addition, we also found that scalable synthesis of P[Q]6 was possible by chemical oxidation of P[HQ]6 with phenyliodine(III)bis(trifluoroacetate) in 1,1,1,3,3,3-hexafluoro-2-propanol.
To understand the electrochemical properties and electron-transfer behavior of P[Q]6, various voltametric studies were carried out. We revealed that three electrons are injected first, followed by stepwise three one-electron reductions due to the electrostatic repulsion in the latter electron-transfer process.
Reference
- T. Ogoshi, T. Yamagishi, Y. Nakamoto, Chem. Rev., 116, 7937 (2016).
- C. Tsuneishi, Y. Koizumi, R. Sueto, H. Nishiyama, K. Yasuhara, T. Yamagishi, T. Ogoshi, Tomita and S. Inagi, Chem. Commun., 53, 7454 (2017).
- T. Hirohata, N. Shida, H. Uekusa, N. Yasuda, H. Nishihara, T. Ogoshi, I. Tomita, S. Inagi, Chem. Commun., 57, 6360 (2021).
