Nickel is considered for use as the anode during zinc regeneration as it has been shown to be an active catalyst for the oxygen evolution reaction (OER). However, nickel electrodes pose manufacturing challenges due to machinability issues. Alternatively, nickel can be coated on a machinable metal substrate to improve scalability. These electrodes are subjected to open circuit voltage (OCV), OER, and the hydrogen evolution reaction (HER) during operation of zinc-air flow batteries. The electrodes have been observed to fail during prolonged voltage cycling due to nickel coating delamination, which manifests itself as blistering, flaking, and discoloration. It is hypothesized that this may be due to electrolyte penetration into the pores of the nickel coating during operation. The present work is aimed at analyzing and mitigating the coating delamination process through characterization of various Ni coating recipes. As-fabricated and cycled electrodes are characterized using various microstructural techniques, including optical microscopy, x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and x-ray tomography. Coated electrodes are also evaluated electrochemically and the results are correlated with the microstructural analysis. The overall goal of the work is to understand the failure mechanisms and apply the knowledge to fabricate improved coatings for OER electrodes.