Multi-junction solar stacks can provide operating voltages >2 V, which is sufficient for reducing CO2 to CO with high efficiencies or even produce multi-carbon products from CO while oxidizing water as anode reaction.3
In this work, we designed a process for photo-electrochemical CO reduction with multi-junction photoabsorbers. We start out by showing photo-electrochemical modelling of tandem photoabsorbers that emphasizes the advantages of CO as reactant compared to CO2. Further, we focus on the preparation of a nano-structured Cu catalyst, the most common material for reducing CO to C2+. Therefore, the electrochemical deposition and surface characterization using SEM, EDX and XPS of the catalyst on a dark model electrode coated with a sputter deposited TiO2 protection layer will be presented. Moreover, the CO reduction performance of the model at different potentials are characterized. In addition, the light transmission of the model electrode is reported, baring the possibility of illuminating the photoelectrode from the catalyst front side in mind. Lastly, the transfer of the model catalyst to a photoabsorber as well as the design of a photo-electrochemical flow-cell are discussed.
- Nitopi, S. et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Rev. 119, 7610–7672 (2019)1.
- Wang, L. et al. Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catal. 8, 7445–7454 (2018)
- Seger, B., Hansen, O. & Vesborg, P. C. K. A Flexible Web-Based Approach to Modeling Tandem Photocatalytic Devices. RRL 1, e201600013 (2017).
