Three samples are studied using lab-based radiography at a frame rate of 3.75 fps with a 16.1 µm pixel resolution and, for comparison, an additional three samples are studied using synchrotron X-ray sources at a higher speed of 20,000 fps with a 13.3 µm pixel resolution. For the six samples investigated, the total time taken from a start temperature of 80 °C to TR is approximately 20 minutes and the onset temperatures for TR are recorded within the range of 196 °C to 210 °C. The beginning of the TR event (defined as a sample temperature increase greater than 15 °C s-1), where the effects to the electrode structure are the most catastrophic, lasts for approximately 1 s. Operando radiographic images during this event reveal that the structural displacement of electrode layers begins at the centre of the cell and propagates outwards in a wave-like motion. The electrode displacement, as a result, is quantified by cross-correlating Gabor signals and spatiotemporal mapping [5] in both types of datasets. For the lab-based radiography, data is recorded from the start temperature to TR (lasting approximately 20 minutes), and reactions such as the electrolyte decomposition, ca. 105 °C, and separator melting, ca.130 °C are characterised in the context of electrode deformation and gas evolution. Investigations of pre- and post-failure 3D X-ray CT images further verify the uniformity of the pristine (or pre-failure) cell assembly as well as the estimated post-failure behaviour between samples. Finally, by comparison with correlative synchrotron measurements, the instrument for inducing thermal failure for lab-based X-ray CT is proven to be a viable and more accessible method to investigate thermal failure within a 210 mAh pouch cell. While synchrotron data has a higher-speed imaging advantage, it is limited to only recording the short TR event at a high temporal resolution. Whereas continuous imaging in lab-based radiography has the benefit of measuring the slower architectural changes taking place up to TR, albeit at a marginally lower spatial resolution.
References
[1] D. H. Doughty and E. P. Roth, Interface Mag., 21, 37–44 (2012).
[2] D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, M. Di Michiel, G. Hinds, D. J. L. Brett, and P. R. Shearing, Phys. Chem. Chem. Phys., 18, 30912–30919 (2016).
[3] D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I. Hunt, T. J. Mason, J. Millichamp, M. Di Michiel, G. J. Offer, G. Hinds, D. J. L. Brett, and P. R. Shearing, Nat. Commun., 6, 6924 (2015).
[4] M. T. M. Pham, J. J. Darst, D. P. Finegan, J. B. Robinson, T. M. M. Heenan, M. D. R. Kok, F. Iacoviello, R. Owen, W. Q. Walker, O. V. Magdysyuk, T. Connolley, E. Darcy, G. Hinds, D. J. L. Brett, and P. R. Shearing, J. Power Sources, 470, 228039 (2020).
[5] A. N. P. Radhakrishnan, M. Buckwell, M. Pham, D. P. Finegan, A. Rack, G. Hinds, D. J. L. Brett, and P. R. Shearing, ChemRxiv (2021).