287
Utilizing Triethyl Phosphate to Increase the Solubility of Lithium Nitrate for Improved Silicon Anode Performance

Monday, 30 May 2022
West Ballroom B/C/D (Vancouver Convention Center)
B. L. Lucht and L. Rynearson (University of Rhode Island)
An electrolyte consisting of lithium nitrate (LiNO3) and lithium difluoro(oxalto)borate (LiDFOB) in ethylene carbonate (EC), ethylmethyl carbonate (EMC), and triethyl phosphate (TEP) was used to improve the long-term cycling stability of silicon anodes. TEP was selected for its ability to dissolve LiNO3 in carbonates to a concentration of ~0.2 M. The large amount of LiNO3 combined with the LiDFOB salt led to a capacity retention of 87.1% after one hundred cycles due to the formation of a stable solid electrolyte interphase (SEI). Ex-situ surface analysis revealed that the SEI consists of oxalates, lithium alkyl carbonates, borates, and nitrate decomposition products. By selecting two components that preferentially reduce before the rest (LiNO3 and LiDFOB), the SEI formed was able to prevent significant solvent decomposition and allow for improved electrochemical cycling in pure silicon anodes.