In this study, cation-doped NaxMgyCuzMn(1−y−z)O2 cathode material featuring synergistic effects of cationic and anionic redox was reported. By cations doping, the inhibited structure evolution and lattice oxygen stabilization were achieved. Moreover, the effects of cation-doped NaxMgyCuzMn(1−y−z)O2 were also studied by electrochemical measurements. Also, the mechanism of cation-doped NaxMgyCuzMn(1−y−z)O2 was confirmed by operando synchrotron X-ray absorption spectrum, operando X-ray diffraction, and density functional theory computations. Cation-doped NaxMgyCuzMn(1−y−z)O2 was synthesized through a facile sol-gel method followed by heat treatment. The cation-doped NaxMgyCuzMn(1−y−z)O2 showed high specific capacity (203 mAh g−1 cycled at 0.1C) as well as better cycling stability, providing sodium layered oxides a new developing stage toward high-performance cathode materials in NIBs for large scale energy storage systems.
Keywords: Na-ion batteries, layered oxides, anionic redox, cathode