2067
(Keynote) Electrocatalysts Designed By Electrodeposition

Tuesday, 31 May 2022: 14:00
West Meeting Room 122 (Vancouver Convention Center)
G. Tsirlina (Moscow State University)
Application of electrodeposition processes to fabricate electrocatalysts is reviewed and illustrated by examples from original research for metallic [1-7] and oxide [8-11] materials. The advantages of electrodeposition technology result from possibility to fabricate the catalyst exactly in operation medium, as well as from high controllability of particle size and microstructural features. The role of deposition potential as a tool to control microstructure is accented. Other approaches to electrocatalyst control are presented by template [3, 5] and quasi-template [6] deposition. Deposition current transients are discusses as a tool to monitor fabrication procedure.

Deposition of platinum group metals is considered in relation to electrocatalysis of anodic fuel cell processes and reductive electrocatalysis of organic and inorganic reagents. For metallic materials, the roles of dispersion (specific surface area) and defectiveness can be easily separated by means of coulometric techniques. This experience can be applied to deposition of copper and copper-based alloys for carbon dioxide electrochemical reduction.

Deposition of oxides is addressed in the context of non-noble electrocatalysts for oxygen and hydrogen peroxide reactions, and also in relation to electrocatalytic processes for sensor applications. In addition to microstructural factors, oxygen stoichiometry is demonstrated to be important factor for electrocatalysis. Stoichiometry control by deposition potential is addressed in respect to oxide/solution equilibria as exampled by the data on tungsten and manganese oxides.

Finally, general principles and experimental approaches to quantify electrocatalytic activity of electrodeposited materials are considered. Namely, the techniques to determine current density normalized to the real surface area are discussed. The advantages of electrodeposited binder-free catalysts are listed and explained.

References

[1] L. M. Plyasova, I. Yu. Molina, A.N.Gavrilov, S. V. Cherepanova, O. V. Cherstiouk, N. A. Rudina, E. R. Savinova, G. A. Tsirlina, Electrochim. Acta, 2006, v.51, p.4477-4488.

[2] A.N. Gavrilov, O.A. Petrii, A.A. Mukovnin, N.V. Smirnova, T.V. Levchenko, G.A. Tsirlina, Electrochim. Acta 2007, v.52, p.2775-2784.

[3] K.S. Napolskii, P.J. Barczuk, S.Yu. Vassiliev, A.G. Veresov, G.A. Tsirlina, P.J. Kulesza, Electrochim. Acta, 2007, v.52, p.7910-7919.

[4] O. V. Cherstiouk, A.N. Gavrilov, L. M. Plyasova, I. Yu. Molina, G. A. Tsirlina, E. R. Savinova, J. Solid State Electrochem. 2008, v.12, p. 497-509.

[5] K. S. Napolskii, I. V Roslyakov, A. A Eliseev, D. I. Petukhov. A. V Lukashin, Shu-Fang Chen, Chuan-Pu Liu, G. A Tsirlina, Electrochim. Acta, 2011, v.56, No 5, p.2378-2384.

[6] E.K.Lavrent’eva, S.Yu.Vassiliev, E.E.Levin, A.A.Tsirlin, S.N.Polyakov, M.Leoni, K.S.Napolskii, O.A.Petrii, G.A.Tsirlina, Electrochimica Acta, 2012, v.61, p. 94-106.

[7] A. N. Simonov, O. V. Cherstiouk, S. Yu. Vassiliev, V. I. Zaikovskii, A. Yu. Filatov, N. A. Rudina, E. R. Savinova, G. A. Tsirlina, Electrochim. Acta, 2014, v.150, p. 279–289.

[8] V. K. Laurinavichyute, A.A. Khokhlov, S. Yu. Vassiliev, A.V. Vannikov, G. A. Tsirlina, Electrochim. Acta, 2013, v.99, p. 102–107.

[9] L. V. Pugolovkin, E. E. Levin, O. V. Cherstiouk, N. A. Rudina, G. A. Tsirlina, ECS Transactions 2018, v.85, p.137-145.

[10] L.V. Pugolovkin, E.E. Levin, N.A. Arkharova, A.S. Orekhov, D.E. Presnov, G.A. Tsirlina, ECS Trans. 2020, v.97, p.749-755.

[11] L.V. Pugolovkin, E.E. Levin, N.A. Arkharova, A.S. Orekhov, D.E. Presnov, G.A. Tsirlina, J. Electroanal. Chem. 2020, v.874, No 114521.