Applying this new analysis to our the investigations revealed that the PEWE system performance using high-performance micro-patterned Ti-foil liquid-gas-diffusion-layer (LGDL) [8,9] was highly sensitive to the cell architecture and exhibited poor mass transport behavior using traditional channel based flow-fields. Compared with the conventional porous transport layer (PTL) morphology, the lack of in-plane permeability of the LGDLs caused faster onset of mass transport limitations at lower flowrates, local increase in HFR, and poor area utilization. Therefore, a unitized single flow-field-LDGL component that mitigates these problems has been designed. Through this work it will be shown that the flow-field is designed to have pins that allow for greater in-plane transport. The staggered pattern reduces pressure drop and promotes exchange in-between channels that assist in efficient bubble removal. Additionally, the cross-section of the pin, the pitch, and aspect-ratios are adjustable to maximize porosity for different LGDLs. Finally, making this into a single unitized component having a permanently attached LGDL will decrease interfacial contact resistances and improve cell performance (as shown in Figure 1).
[1] T. V. Reshetenko, G. Bender, K. Bethune, R. Rocheleau, A segmented cell approach for studying the effects of serpentine flow field parameters on PEMFC current distribution, Electrochim. Acta. 88 (2013) 571–579. https://doi.org/10.1016/j.electacta.2012.10.103.
[2] A. Phillips, M. Ulsh, J. Porter, G. Bender, Utilizing a Segmented Fuel Cell to Study the Effects of Electrode Coating Irregularities on PEM Fuel Cell Initial Performance, Fuel Cells. 17 (2017) 288–298. https://doi.org/10.1002/fuce.201600214.
[3] C. Immerz, B. Bensmann, P. Trinke, M. Suermann, R. Hanke-Rauschenbach, Local Current Density and Electrochemical Impedance Measurements within 50 cm Single-Channel PEM Electrolysis Cell, J. Electrochem. Soc. 165 (2018) F1292–F1299. https://doi.org/10.1149/2.0411816jes.
[4] F.H. Roenning, A. Roy, D. Aaron, M.M. Mench, Spatially-Resolved Current Distribution Measurements in Polymer Electrolyte Water Electrolyzers, ECS Meet. Abstr. MA2020-02 (2020) 2457–2457. https://doi.org/10.1149/MA2020-02382457mtgabs.
[5] A. Roy, F. Roenning, D. Aaron, M.M. Mench, Quantifying Lateral Current Spread While Measuring Performance Using a Segmented Polymer Electrolyte Water Electrolysis Cell, ECS Meet. Abstr. MA2020-02 (2020) 2458–2458. https://doi.org/10.1149/MA2020-02382458mtgabs.
[6] A. Roy, F. Roenning, D. Aaron, M.M. Mench, Local Two-Phase Flow and Performance in Polymer Electrolyte Water Electrolysis Cells, ECS Meet. Abstr. MA2021-01 (2021) 1190–1190. https://doi.org/10.1149/MA2021-01381190mtgabs.
[7] A.Z. Weber, R.L. Borup, R.M. Darling, P.K. Das, T.J. Dursch, W. Gu, D. Harvey, A. Kusoglu, S. Litster, M.M. Mench, R. Mukundan, J.P. Owejan, J.G. Pharoah, M. Secanell, I. V. Zenyuk, A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells, J. Electrochem. Soc. 161 (2014) F1254–F1299. https://doi.org/10.1149/2.0751412jes.
[8] J. Mo, Z. Kang, S.T. Retterer, D.A. Cullen, T.J. Toops, J.B. Green, M.M. Mench, F.-Y. Zhang, Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting, Sci. Adv. 2 (2016) e1600690. https://doi.org/10.1126/sciadv.1600690.
[9] Y. Li, Z. Kang, X. Deng, G. Yang, S. Yu, J. Mo, D.A. Talley, G.K. Jennings, F.-Y. Zhang, Wettability effects of thin titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells, Electrochim. Acta. 298 (2019) 704–708. https://doi.org/10.1016/j.electacta.2018.12.162.