In this presentation, I will discuss our recent efforts to develop neutron radiography as an operando characterization method for non-aqueous redox flow batteries. We leverage the high attenuation of organic materials (i.e., high hydrogen content) in solution and, combined with isotopic labelling, we perform subtractive neutron imaging to quantify the concentration of active species and supporting electrolytes. To demonstrate the potential of this diagnostic tool, we characterize active species concentration distribution within a redox flow cell in a single electrolyte configuration with a non-aqueous electrolyte containing a TEMPO/TEMPO+ redox couple and study the influence of electrode microstructure, membrane type (e.g. porous or dense), and flow field design. To resolve the concentration profiles across the different layers, we employ the in-plane imaging configuration11 and correlate these concentration profiles to cell performance via polarization measurements under different operating conditions. In the final part of the talk, I will discuss our latest experimental campaign in which we investigated the use of energy-selective neutron radiography to deconvolute concentrations of active species and supporting electrodes during operation.
References
1 P. Boillat, E. H. Lehmann, P. Trtik and M. Cochet, Curr. Opin. Electrochem., , DOI:https://doi.org/10.1016/j.coelec.2017.07.012.
2 J. Eller, T. Rosén, F. Marone, M. Stampanoni, A. Wokaun and F. N. Büchi, J. Electrochem. Soc., 2011, 158, B963.
3 B. Michalak, H. Sommer, D. Mannes, A. Kaestner, T. Brezesinski and J. Janek, Sci. Rep., 2015, 5, 15627.
4 D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I. Hunt, T. J. Mason, J. Millichamp, M. Di Michiel, G. J. Offer, G. Hinds, D. J. L. Brett and P. R. Shearing, Nat. Commun., 2015, 6, 6924.
5 A. A. Wong, M. J. Aziz and S. Rubinstein, ECS Trans. , 2017, 77, 153–161.
6 H. Tanaka, Y. Miyafuji, J. Fukushima, T. Tayama, T. Sugita, M. Takezawa and T. Muta, J. Energy Storage, 2018, 19, 67–72.
7 E. W. Zhao, T. Liu, E. Jónsson, J. Lee, I. Temprano, R. B. Jethwa, A. Wang, H. Smith, J. Carretero-González, Q. Song and C. P. Grey, Nature, 2020, 579, 224–228.
8 R. Jervis, L. D. Brown, T. P. Neville, J. Millichamp, D. P. Finegan, T. M. M. Heenan, D. J. L. Brett and P. R. Shearing, J. Phys. D. Appl. Phys., , DOI:10.1088/0022-3727/49/43/434002.
9 F. Tariq, J. Rubio-Garcia, V. Yufit, A. Bertei, B. K. Chakrabarti, A. Kucernak and N. Brandon, Sustain. Energy Fuels, 2018, 2, 2068–2080.
10 K. Köble, L. Eifert, N. Bevilacqua, K. F. Fahy, A. Bazylak and R. Zeis, J. Power Sources, , DOI:10.1016/j.jpowsour.2021.229660.
11 P. Boillat, D. Kramer, B. C. Seyfang, G. Frei, E. Lehmann, G. G. Scherer, A. Wokaun, Y. Ichikawa, Y. Tasaki and K. Shinohara, Electrochem. commun., 2008, 10, 546–550.