Here we demonstrate a chemiresistive sensor array for the continuous monitoring of chloramine in the water. Chemiresistive sensors are cheap, robust and use low power. These sensors detect an analyte through changes in the electronic properties of the transducing element. A nanocarbon network was airbrushed onto the frosted side of a microscope glass slide as the transducing element between two pencil trace contact patches. Copper tapes were placed on top of the pencil patches and then covered with a dielectric. 10 mV voltage was applied for the measurements, and the changes in resistance were measured as the analyte interacted with the transducing element. The surface of the nanocarbon network is functionalized with suitable dopant molecules by submerging the sensor in the molecule solution. This array of molecules will be able to capture the parameters to be able to classify the type of chloramine present in water. Fresh chloramine solution is prepared before each experiment by adding NH4Cl and NaOCl in Phosphate Buffered Saline (PBS). Sensor responses are recorded as positive current change with increasing concentrations of monochloramine. Here the hole density of the inherently p-doped substrate increases when exposed to monochloramine, and thereby resulting in increasing current. Sensors can be reset with ascorbic acid or water. Sensors were tested with 0.054 ppm to 1.437 ppm of monochloramine in pH 7.5 and 8.5. Functionalized sensor devices showed a considerably higher response than the unfunctionalized ones. The tap water sample was tested with the calibrated devices. We have therefore demonstrated a robust sensor array capable of continuously monitoring chloramine in aqueous media.
References:
- T. L. Engelhardt and V. B. Malkov, Chlorination, chloramination and chlorine measurement, p. 1–67, (2015).
- US Environmental Protection Agency - Office of Water, Alternative disinfectants and oxidants Guidance manual, 1st Ed., p. 1–328, (Washington, DC) US Environmental Agency, (1999).
- S. H. Jenkins, Water Res., 16, 1495–1496 (1982).
- T. H. Nguyen et al., Sensors Actuators, B Chem., 187, 622–629 (2013).
- T. H. Nguyen et al., Sensors Actuators, B Chem., 208, 622–627 (2015).
- Health Canada, Chloramines in drinking water (2019).
- World Health Organization, Guidelines for drinking-water quality: fourth edition incorporating the first addendum, 4th Ed + 1., Geneva: World Health Organization, (2017).
