Tuesday, 11 October 2022: 17:00
Room 305 (The Hilton Atlanta)
Reversible electrochemical doping of ruthenium hexacyanoruthenate, a type of Prussian blue analogue (PBA), enables the on-demand tuning of electronic conductivity by more than four orders of magnitude. Inkjet-printed electrochemical random access memory (ECRAM) devices based on Ru-PBA and lithium- or proton-conducting ionogel electrolytes exhibit excellent switching efficiency and long-term memory retention, important characteristics for analog artificial synapses in neuromorphic circuits. We also demonstrate excellent biocompatibility with live neurons and the use of Ru-PBA ECRAM devices to detect dopamine, promising first steps toward connecting artificial and biological neural networks. In-situ probing of metal-metal charge transfer by UV/Vis/NIR absorption spectroscopy reveals a switching mechanism whereby electrochemically tunable valence mixing between N-coordinated Ru sites controls the carrier concentration and mobility, as independently supported by both Marcus-Hush electron transfer theory and more conventional band structure predictions from DFT. The experimental agreement achieved by both theoretical approaches supports a general mechanistic picture that intramolecular charge transfer reactions, more commonly studied in polynuclear mixed valence small molecules, are central to electronic conductivity in extended coordination frameworks.