Monday, 10 October 2022: 15:40
Galleria 4 (The Hilton Atlanta)
Next generation batteries utilizing solid-state electrolytes to enable use of lithium metal electrodes are of significant interest due to increased energy density and the potential safety enhancements. Despite their high yield strength, high room temperature ionic conductivity, and lack of reactivity with metallic lithium, these ceramic solid electrolytes are still prone to dendrite formation and subsequent cell failure above critical current densities. One experimentally observed dendrite formation and propagation mechanism requires mechanical failure of the electrolyte via fracture. Ceramic solid electrolyte’s do not undergo ductile deformation, leaving fracture as the primary means of stress relaxation. The electrolyte’s propensity to fracture is dependent on its material properties (i.e. fracture toughness), electrode mechanical properties, and the cell operating conditions (e.g. applied current density, stack pressure, temperature). This talk will focus on electrochemical-mechanical coupling (including thermodynamic and kinetic couplings of mechanical forces with electrochemical behavior) and the relationship between the current distribution, developed stresses, and solid-electrolyte fracture initiation at Li protrusions. The effect of current focusing on stress-driven fracture, plastic deformation of lithium, and the influence of mechanical boundary conditions will be described.