In this work we discuss complete studies of transport properties in lithium-ion and lithium metal battery-relevant PESs- specifically lithium triflimide appended polystyrene (PS-LiTFSI) and polymethacrylate (PM-LiTFSI) dissolved in carbonate blends. All prior PES experimental work in the literature has relied on ideal solution assumptions for measuring transport properties. This work represents the first rigorous characterization of transport properties for a battery-relevant polyelectrolyte solution. Using electrophoretic NMR and electrochemical experiments, we characterized the transport properties, including the electrophoretic ion mobilities, conductivity, diffusion coefficients, and t+ of these model PESs. While previous studies that rely on ideal assumptions predict that PESs will have higher t+ than monomeric solutions, we demonstrate that below the entanglement limit, t+ decreases with increasing degree of polymerization. For higher degrees of polymerization, we directly observe Li+ move in the “wrong direction” in an electric field, evidence of a negative transference number due to correlated motion through ion clustering. Using calculated Onsager transport coefficients and insights from molecular dynamics modeling, we demonstrate that despite selectively slowing anion motion using polyanions, anion-anion correlation through the polymer backbone and cation-anion correlation through ion aggregates reduce the t+ in non-entangled PESs.
References
- Diederichsen, K. M. et al. ACS Energy Lett. (2017).
- Diederichsen, K. M. et al. Macromolecules (2018).
- Dewing, B. L., et al. Chem. Mater. (2020).
- Fong, K. D. et al. ACS Cent. Sci. (2019).
- Fong, K. D., et al. Macromolecules (2020).