Here, we performed photocurrent detection of exciton quantum interference signals in QD thin films. The samples used in this study were closely packed PbS QD thin films. The QD films were sandwiched between the electron and hole transport layers to extract photogenerated carriers. Multiexcitons were generated by phase-locked femtosecond laser pulses, and then their photocurrent quantum interference signals were measured by using a quantum interference technique [4]. The photocurrent interference signal in the weak excitation shows a single sinusoidal oscillation originating from single excitons, while the interference signal changes to the profile involving multiple sinusoidal oscillations with increasing excitation intensity. This means that the multiexciton quantum coherence exhibiting harmonic oscillations is successfully detected in a photocurrent technique [5]. Furthermore, the amplitudes of harmonic quantum coherent signals in coupled QDs are significantly larger than those in isolated QDs. We clarified that the enhancement of the amplitudes is caused by cooperative processes in coupled QDs, where excitons in adjacent QDs interact with each other through their inter-QD coherent coupling. This cooperative effect can provide a new way to use inter-QD coherent coupling in advanced optoelectronic applications, e.g., amplifiers of coherent signals.
Part of this work was supported by JSPS KAKENHI (JP19H05465 and JP22H01990) and JST CREST (JPMJCR21B4).
References
[1] Kanemitsu, Y. Trion dynamics in lead halide perovskite nanocrystals. J. Chem. Phys. 151, 170902 (2019).
[2] Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals. Phys. Rev. Lett. 119, 247401 (2017).
[3] Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Quantum coherence of multiple excitons governs absorption cross-sections of PbS/CdS core/shell nanocrystals. Nat. Commun. 9, 3179 (2018).
[4] Tahara, H.; Kanemitsu, Y. Quantum Interference Measurements and Their Application to Analysis of Ultrafast Photocarrier Dynamics in Semiconductor Solar Cell Materials. Adv. Quantum Technol. 3, 1900098 (2020).
[5] Tahara, H.; Sakamoto, M.; Teranishi, T.; Kanemitsu, Y. Collective enhancement of quantum coherence in coupled quantum dot films. Phys. Rev. B 104, L241405 (2021).