Electrochemically Induced Sol-Gel Deposition

Sunday, 9 October 2022: 13:30
Room 301 (The Hilton Atlanta)
A. Walcarius (LCPME-CNRS)
Sol-gel electrochemistry has gained great popularity in the past decades, mostly because of the ease of formation of silica and organosilica films with tailor-made properties that can be advantageously exploited for several applications when coated on a suitable electrode surface. In particular, silica-based materials displaying a regular structure at the mesoporous level have been found to be very promising electrode modifiers [1-3] because they ensure fast mass transport processes [4], which are often rate-determining in electrochemistry. In this context, an original electrochemical method has been developed to indirectly generate sol-gel-derived (organo)silica thin films, with promising applications in the field of bioelectrochemistry and sensors and beyond. After a brief introduction to the field, this lecture will present the concept the electrochemically-assisted generation of sol-gel films [5], its interest for bioencapsulation and elaboration of electrochemical bioreactors [6-9], its suitability to get nanostructured electrode surfaces with preferential pore orientation [3,10,11], including their modification with organo-functional groups [3,12,13] and their permselective properties [14-16], and will end with promising applications in electroanalysis and sensors [17-20], electrocatalysis [20,21], energy storage [22] or electrochromism [23].

References

[1] A. Walcarius, Chem. Soc. Rev., 42, 4098 (2013).

[2] A. Walcarius, Curr. Opin. Electrochem., 10, 88 (2018).

[3] A. Walcarius, Acc. Chem. Res., 54, 3563 (2021).

[4] M. Etienne, Y. Guillemin, D. Grosso and A. Walcarius, Anal. Bioanal. Chem., 405, 1497 (2013).

[5] E. Sibottier, S. Sayen, F. Gaboriaud and A. Walcarius, Langmuir, 22, 8366 (2006).

[6] Z. Wang, M. Etienne, G.-W. Kohring, Y. Bon Saint Côme, A. Kuhn and A. Walcarius, Electrochim. Acta, 56, 9032 (2011).

[7] Z. Wang, M. Etienne, F. Quilès, G.-W. Kohring and A. Walcarius, Biosensors Bioelectron., 32, 111 (2012).

[8] I. Mazurenko, M. Etienne, G.-W. Kohring, F. Lapicque and A. Walcarius, Electrochim. Acta, 199, 342 (2016).

[9] L. Zhang, M. Etienne, N. Vilà, T. X. H. Le, G.-W. Kohring and A. Walcarius, ChemCatChem, 10, 4067 (2018).

[10] A. Walcarius, E. Sibottier, M. Etienne and J. Ghanbaja, Nature Mater., 6, 602 (2007).

[11] A. Goux, M. Etienne, E. Aubert, C. Lecomte, J. Ghanbaja and A. Walcarius, Chem. Mater., 21, 731 (2009).

[12] N. Vilà, J. Ghanbaja, E. Aubert and A. Walcarius, Angew. Chem. Int. Ed., 53, 2945 (2014).

[13] N. Vilà, J. Ghanbaja and A. Walcarius, Adv. Mater. Interfaces, 3, 1500440 (2016).

[14] N. Vilà, E. André, R. Ciganda, J. Ruiz, D. Astruc and A. Walcarius, Chem. Mater., 28, 2511 (2016).

[15] C. Karman, N. Vilà and A. Walcarius, ChemElectroChem, 3, 2130 (2016).

[16] N. Vilà, P. de Oliveira, A. Walcarius and I. M. Mbomekallé, Electrochim. Acta, 309, 209 (2019).

[17] M. B. Serrano, C. Despas, G. Herzog and A. Walcarius, Electrochem. Commun., 52, 34 (2015).

[18] T. Nasir, G. Herzog, L. Liu, M. Hébrant, C. Despas and A. Walcarius, ACS Sensors, 3, 484 (2018).

[19] C. Karman, N. Vilà, C. Despas and A. Walcarius, Electrochim. Acta, 228, 659 (2017).

[20] H. Maheshwari, N. Vilà, G. Herzog and A. Walcarius, ChemElectroChem, 7, 2095 (2020).

[21] S. Ahoulou, N. Vilà, S. Pillet, D. Schaniel and A. Walcarius, Electroanalysis, 32, 690 (2020).

[22] J. Wang, N. Vilà and A. Walcarius, Electrochim. Acta, 366, 137407 (2021).

[23] W. Ullah, G. Herzog, N. Vilà and A. Walcarius, Faraday Discuss., 233, 77 (2022).