Effect of Nitrogen Ligand Type on 3d Orbital Level Rearrangement of Cobalt Single Atom Catalysts

Monday, 10 October 2022
T. Jeong (Kyungpook National University), J. Kang (Pusan National University), B. H. Kim (KOREA INSTITUTE OF ENERGY RESEARCH), and M. Kim (Kyungpook National University)
Transition metal single atom catalysts have recently emerged in acid oxygen evolution reactions (OER) due to their maximum atomic efficiency and high durability. Herein, we report a 3d orbital level rearrangement in square planar symmetry according to the ligand type of a cobalt single atom catalyst. We fabricate cobalt single atom catalyst supported on pyrrole type nitrogen doped crumpled graphene (Pyrrolic CoN4-CG) for acidic OER and it shows orbital rearrangement phenomenon because of their longer Co-N bond distance than pyridine type CoN4 sites. When pyrrole type nitrogen is introduced as a ligand of a cobalt single atom catalyst, the degree of oxidation during OER reaction is much greater than when pyridine type nitrogen ligand is introduced, which is confirmed by Operando X-ray absorption spectroscopy measurements. In addition, the reduction of OH- adsorption energy according to the orbital level rearrangement of Pyrrolic CoN4 and the change in the rate determination step are revealed by density functional theory calculations.