In this study, we investigated Ni-based MHOFs with carboxylate linkers of varying π-π interaction strengths to understand how these differences affect the electrochemical stability of these materials during OER. We observed that the MHOFs all undergo activation during OER leading to two orders of magnitude increase in OER activity, where the MHOFs with weaker π-π interaction strengths tend to transform at a faster rate than the MHOFs with stronger π-π interaction strengths. We further characterized the MHOFs using a wide range of analytical techniques, including scanning transmission electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and hard x-ray absorption spectroscopy, before and after extended OER cycling and galvanostatic tests to understand the transformed phase, which suggested that while the bulk structure largely remains unchanged, the surface undergoes significant restructuring into a Ni(OH)2-like phase during OER. Using operando UV-vis and Raman spectroscopy measurements on the MHOFs during OER to understand the factors that induce the transformation process, we found that there was a clear link between the Ni2+/3+, 4+ redox couple observed around 1.4 VRHE and a loss in the carboxylate organic linkers for the linkers with weak π-π interactions. However, for the MHOFs synthesized with linkers exhibiting strong π-π interaction strengths, there were smaller changes to the overall material during OER, suggesting that the bulk stability of these materials is largely dictated by the linker interaction strength and activation are primarily only surface transformations. These results directly demonstrate that linker selection also plays a key role in the stability MOFs under electrochemical conditions and are pertinent for rational design and understanding of the stability and activity of hybrid organic-inorganic materials as electrocatalysts.
References:
- Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).
- Yuan, S. et al. Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nat. Mater. (2022).