Tuesday, 11 October 2022: 15:20
Room 216 (The Hilton Atlanta)
Sodium-metal chloride batteries are considered a sustainable and safe alternative to lithium-ion batteries for large-scale stationary electricity storage, but exhibit disadvantages in rate capability. Several studies identified metal-ion migration through the metal chloride conversion layer on the positive electrode as the rate-limiting step, limiting charge and discharge rates in sodium-metal chloride batteries. Here we present electrochemical nickel and iron chlorination with planar model electrodes in molten sodium tetrachloroaluminate electrolyte at 300 °C. We discovered that, instead of metal-ion migration through the metal chloride conversion layer, it is metal-ion diffusion in sodium tetrachloraluminate. which limits chlorination of both the nickel and iron electrodes. Upon charge, chlorination of the nickel electrode proceeds via uniform oxidation of nickel and the formation of NiCl2 platelets on the surface of the electrode. In contrast, the oxidation of the iron electrodes proceeds via localized intergranular dissolution, resulting in non-uniform iron oxidation and pulverization of the iron electrode. We further discuss the transition from planar model electrodes to porous high-capacity electrodes, where sodium-ion migration along the tortuous path in the porous electrode can become rate limiting. These mechanistic insights are important for the design of competitive next-generation sodium-metal chloride batteries with improved rate performance.