The improvement of ionic conductivity and design and development of solid electrolyte materials are closely related to our understanding on the ionic diffusion mechanism in solids and the structure-property relationship. We believe that rational design of high-performance solid electrolyte should start from careful characterization and good understanding of the crystal structure. Here we report the crystal structure characterization on sulfides and halide solid electrolytes and the design and development of novel solid electrolytes based on our findings in structural characterizations. Ex situ high resolution synchrotron X-ray and neutron diffraction and pair distribution function analysis are used to understand the crystal structures in great details. In situ X-ray diffraction for different synthesis methods is coupled with variable temperature electrochemical impedance spectroscopy to understand the structure-property relationship in the solid electrolytes. The design, synthesis and electrochemical evaluation of several solid electrolytes will be presented and discussed.