Corrosion Testing in Nitrate Molten Salt Using Rotating Cylindrical Electrode

Wednesday, 12 October 2022: 15:40
Room 308 (The Hilton Atlanta)
T. Townsend (University Of Nevada, Reno) and D. Chidambaram (University of Nevada, Reno)
Molten salts are under consideration as the working fluid in thermal power generation. Nitrate molten salts store vast amounts of energy at high temperature and are an efficient energy production medium. Nitrate molten salts are corrosive to structural materials in these applications. Static corrosion studies may neglect the effects of fluid flow on corrosion and flowing test loops can be expensive and complex. A rotating cylinder electrode (RCE) can simulate the effects of fluid flow on the corrosion of structural materials and are more compact and economical then flow loops. We have developed a rotating cylinder electrode apparatus to study the corrosion of structural metals in flowing molten salts using accelerated electrochemical corrosion testing. In this study, we have evaluated the corrosion behavior in molten nitrate salts and used various surface characterization techniques to compare the results from static corrosion tests. Results and analysis of these studies will be presented.

Acknowledgement:

This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs under awards DE-NE0008889 and DE-NE0008236, and the US Nuclear Regulatory Commission (USNRC) under contract 31310018M0032. Dr. Kenny Osborne and Ms. Nancy Hebron-Isreal serve as the program managers for the DOE and NRC awards, respectively.