To closely study the underlying phenomena, LMR-NCM oxides with different morphologies are synthesized. Therefore, the syntheses via coprecipitation in a Couette-Taylor flow reactor and in a conventional flask are compared. The constant monitoring of critical parameters during the synthesis by means of the reactor leads to dense spherical particles with a narrow particle size distribution. These characteristics offer a spherical cathode material with enhanced capacity retention due to a more compact structure with a lower surface area. Also, taking the voltage fade into consideration allows a more objective evaluation of LMR-NCM oxides materials especially in direct comparison with state-of-the-art NCM-based cathodes.
[1] E. M. Erickson, F. Schipper, T. R. Penki, J.-Y. Shin, C. Erk, F.-F. Chesneau, B. Markovsky, D. Aurbach J. Electrochem. Soc. 2017, 164, A6341 – A6348.
[2] B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, Y. Zhu, Z. Liu, Y. S. Meng Nat. Commun. 2016, 7, 12108.
[3] D. Andre, S.-J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos, B. Stiaszny J. Mater. Chem. A 2015, 3, 6709 – 6732.
[4] T. Placke, R. Kloepsch, S. Dühnen, M. Winter J. Solid State Electrochem. 2017, 21, 1939 – 1964.