In this work, we employed X-ray core-level spectroscopies, coupled with ab-initio calculations to first understand the redox processes and structural evolution of model systems exhibiting oxygen redox. Through this effort, we have presented a holistic picture of the anionic redox mechanism in the context of previously proposed redox schemes put forward by different researchers. Moreover, through leveraging the learning of the redox process of model materials, we systematically tuned the transition metal species in the metal oxygen framework in those Li-rich oxides, which allows us to pinpoint potential electronic-structure-based descriptors to capture the activation and reversibility of the anionic redox process. This study has laid the foundation for future high-throughput screening of new generation high-energy-density positive electrodes for Li-ion batteries.
References
1.Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A., Journal of Materials Chemistry 2005, 15 (23), 2257-2267.
2.Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W., Nature Materials 2013, 12 (9), 827-835.
3.Yabuuchi, N.; Nakayama, M.; Takeuchi, M.; Komaba, S.; Hashimoto, Y.; Mukai, T.; Shiiba, H.; Sato, K.; Kobayashi, Y.; Nakao, A., Nature Communications 2016, 7, 13814.
4.Perez, A. J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanère, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M., Nature Energy 2017, 2 (12), 954.
5.Gent, W. E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S.-J.; Stone, K. H.; McIntire, M.; Hong, J.; Song, J. H., Nature Communications 2017, 8 (1), 2091.
6.Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G., Nature Chemistry 2016, 8 (7), 692-697.
7.Saubanère, M.; McCalla, E.; Tarascon, J.-M.; Doublet, M.-L., Energy & Environmental Science 2016, 9 (3), 984-991.