289
Cathode Properties of Rocksalt-type LiFeOF for Li-Ion Batteries

Tuesday, 10 June 2014
Cernobbio Wing (Villa Erba)
A. Kitajou (Kyoto University), T. Kidera (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University), and S. Okada (Kyushu University)
The iron-based conversion-type cathode materials attract attention due to the low cost and the high theoretical capacity. Among them, Fe2O3 has the highest theoretical capacity; FeF3 has the highest discharge voltage, and FeOF shows the highest energy density. However, these conversion-type cathodes can’t use in Li-ion type cell with carbonaceous anode, because they don’t include lithium-ion in the initial composition. Recently, K. Kang group reported LiF-FeF2 nano-composite can be used as cathode for Li-ion batteries [1]. Actually, LiF-FeF2 nanocomposite showed that the reversible specific capacity was ca. 190 mAh/g with the average voltage of 3.6 V. In this research, we tried to prepare LiF-FeO composite as the novel cathode materials for Li-ion batteries by dry mechanical ball-milling method. Moreover, the cathode properties of LiF-FeO nanocomposite were evaluated against lithium metal or Li4Ti5O12 (LTO).

LiF-FeO was prepared by mixing of LiF and FeO with a molar ratio of LiF : FeO = 1.2 : 1. The mixture was dry ball-milled in Ar for 24, 48 and 72 h, respectively. After mechanical ball milling, 5 wt % acetylene black (AB) was added to 70 wt % mixture in Ar for 24 h. Then, the 75 wt % obtained LiF-FeO/carbon composite power was also mixed with 20 wt % AB and 5 wt % PTFE teflon binder and punched in the form of disks (10 mm in diameter). The electrochemical performance was evaluated with a 2032 coin-type cell using a non-aqueous electrolyte (1M LiPF6 in EC:DMC=1:1 in volume) against Li metal anode or LTO anode.

Rocksalt-type LiFeOF was obtained from LiF and FeO by the dry ball-milling method under ambient pressure. The reversible capacity of LiFeOF was 292 mAh/g with an average voltage of 2.5 V and an energy density over 700 mWh/g, which is higher than the theoretical energy density of LiFePO4 (Fig. 1). In addition, we confirmed that a LiFeOF can actually work as cathode in Li-ion type cell with LTO anode. The initial charge and discharge capacities per cathode weight were 180 mAh/g and 149 mAh/g with an 83% discharge/charge efficiency. The discharge capacity was 130 mAh/g even after 30 cycles, and the cycling efficiency of LiFeOF was 87%. The reversibly expansion and contraction of structure of LiFeOF during cycling was measured with XRD.