103
Invited Presentation: Present Understanding of the High Capacity Layered Oxide Electrodes
In an attempt to understand both the aforementioned issues, we have designed structurally related Li2Ru1-yMyO3 materials (M= Sn, Mn, Ti; 0 ≤ y ≤ 1).4-6 Containing a single redox-active cation and displaying sustainable reversible capacities as high as 230 mAh/g, the Li2Ru1-ySnyO3 phases turn out to be the ideal system to unambiguously show, based on an arsenal of characterization techniques, that the reactivity of these high capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (“O2–→O22–”) reversible redox processes.4 To address the voltage decay issue, Ti4+ (d0) substitution was selected owing to its zero CFSE ,similar to Sn4+(d10), and its smaller size (0.60Å); with the expectation that Ti would be more likely to show accelerated cation migration for direct visualization of migration paths.6
The results of such studies will be reported with the hope that they will help the battery community to develop high capacity layered electrodes free from voltage decays upon cycling.
References:
- T. Ozhuku, Y. Makimura, Chem Lett, 30, 642-643 (2001).
- M. M. Thackeray,S-H. Kang, C. S. Johnson, J. T. Vaughey,R. Benedek,S. A. Hackney,J. Mater Chem, 17, 3112-3125 (2007).
- F. Zhou,X. Zhao,A.Van Bommel, X. Xia,J. R. Dahn, J. Electrochem. Soc.158, A187-A191 (2011).
- M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. L. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J.- M. Tarascon,Nat Mater, 12, 827-835 (2013).
- M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, J.-M. Tarascon, Chem Mater25, 1121-1131 (2013).
- M. Sathiya, A. M. Abakumov, K. Ramesha, D. Foix, G. Rousse, C. P. Laisa, D. Gonbeau, M. L. Doublet, A. S. prakash, G, van Tendeloo, J-M. Tarascon, Manuscript submitted (Nature Materials)